KMS Of Academy of mathematics and systems sciences, CAS
| Laplace’s equation with concave and convex boundary nonlinearities on an exterior region | |
| Mao,Jinxiu; Zhao,Zengqin; Qian,Aixia | |
| 2019-03-13 | |
| 发表期刊 | Boundary Value Problems
![]() |
| ISSN | 1687-2770 |
| 卷号 | 2019期号:1 |
| 摘要 | AbstractThis paper studies Laplace’s equation ?Δu=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$-\Delta u=0$\end{document} in an exterior region U?RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$U\varsubsetneq {\mathbb{R}}^{N}$\end{document}, when N≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$N\geq 3$\end{document}, subject to the nonlinear boundary condition ?u?ν=λ|u|q?2u+μ|u|p?2u\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{\partial u}{\partial \nu }=\lambda \vert u \vert ^{q-2}u+\mu \vert u \vert ^{p-2}u$\end{document} on ?U with 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} and μ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu \in \mathbb{R}$\end{document} arbitrary, then there exists a sequence {uk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{u_{k} \}$\end{document} of solutions with negative energy converging to 0 as k→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\to \infty $\end{document}; on the other hand, when λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \mathbb{R}$\end{document} and μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document} arbitrary, then there exists a sequence {u?k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\tilde{u}_{k} \}$\end{document} of solutions with positive and unbounded energy. Also, associated with the p-Laplacian equation ?Δpu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-\Delta _{p} u=0$\end{document}, the exterior p-harmonic Steklov eigenvalue problems are described. |
| 关键词 | Exterior regions Laplace operator Concave and convex mixed nonlinear boundary conditions Fountain theorems Steklov eigenvalue problems 35J20 35J65 46E22 49R99 |
| DOI | 10.1186/s13661-019-1163-7 |
| 语种 | 英语 |
| WOS记录号 | BMC:10.1186/s13661-019-1163-7 |
| 出版者 | Springer International Publishing |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/32525 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Mao,Jinxiu |
| 作者单位 | |
| 推荐引用方式 GB/T 7714 | Mao,Jinxiu,Zhao,Zengqin,Qian,Aixia. Laplace’s equation with concave and convex boundary nonlinearities on an exterior region[J]. Boundary Value Problems,2019,2019(1). |
| APA | Mao,Jinxiu,Zhao,Zengqin,&Qian,Aixia.(2019).Laplace’s equation with concave and convex boundary nonlinearities on an exterior region.Boundary Value Problems,2019(1). |
| MLA | Mao,Jinxiu,et al."Laplace’s equation with concave and convex boundary nonlinearities on an exterior region".Boundary Value Problems 2019.1(2019). |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论