CSpace
Laplace’s equation with concave and convex boundary nonlinearities on an exterior region
Mao,Jinxiu; Zhao,Zengqin; Qian,Aixia
2019-03-13
Source PublicationBoundary Value Problems
ISSN1687-2770
Volume2019Issue:1
AbstractAbstractThis paper studies Laplace’s equation ?Δu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-\Delta u=0$\end{document} in an exterior region U?RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U\varsubsetneq {\mathbb{R}}^{N}$\end{document}, when N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq 3$\end{document}, subject to the nonlinear boundary condition ?u?ν=λ|u|q?2u+μ|u|p?2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{\partial u}{\partial \nu }=\lambda \vert u \vert ^{q-2}u+\mu \vert u \vert ^{p-2}u$\end{document} on ?U with 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} and μ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu \in \mathbb{R}$\end{document} arbitrary, then there exists a sequence {uk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{u_{k} \}$\end{document} of solutions with negative energy converging to 0 as k→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\to \infty $\end{document}; on the other hand, when λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \mathbb{R}$\end{document} and μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document} arbitrary, then there exists a sequence {u?k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\tilde{u}_{k} \}$\end{document} of solutions with positive and unbounded energy. Also, associated with the p-Laplacian equation ?Δpu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-\Delta _{p} u=0$\end{document}, the exterior p-harmonic Steklov eigenvalue problems are described.
KeywordExterior regions Laplace operator Concave and convex mixed nonlinear boundary conditions Fountain theorems Steklov eigenvalue problems 35J20 35J65 46E22 49R99
DOI10.1186/s13661-019-1163-7
Language英语
WOS IDBMC:10.1186/s13661-019-1163-7
PublisherSpringer International Publishing
Citation statistics
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/32525
Collection中国科学院数学与系统科学研究院
Affiliation
Recommended Citation
GB/T 7714
Mao,Jinxiu,Zhao,Zengqin,Qian,Aixia. Laplace’s equation with concave and convex boundary nonlinearities on an exterior region[J]. Boundary Value Problems,2019,2019(1).
APA Mao,Jinxiu,Zhao,Zengqin,&Qian,Aixia.(2019).Laplace’s equation with concave and convex boundary nonlinearities on an exterior region.Boundary Value Problems,2019(1).
MLA Mao,Jinxiu,et al."Laplace’s equation with concave and convex boundary nonlinearities on an exterior region".Boundary Value Problems 2019.1(2019).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Mao,Jinxiu]'s Articles
[Zhao,Zengqin]'s Articles
[Qian,Aixia]'s Articles
Baidu academic
Similar articles in Baidu academic
[Mao,Jinxiu]'s Articles
[Zhao,Zengqin]'s Articles
[Qian,Aixia]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Mao,Jinxiu]'s Articles
[Zhao,Zengqin]'s Articles
[Qian,Aixia]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.