CSpace
Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries
Rodriguez, Carl L.1; Amaro-Seoane, Pau2,3,4,5; Chatterjee, Sourav6; Kremer, Kyle7,8; Rasio, Frederic A.7,8; Samsing, Johan9; Ye, Claire S.7,8; Zevin, Michael7,8
2018-12-10
Source PublicationPHYSICAL REVIEW D
ISSN2470-0010
Volume98Issue:12Pages:16
AbstractUsing state-of-the-art dynamical simulations of globular clusters, including radiation reaction during black hole encounters and a cosmological model of star cluster formation, we create a realistic population of dynamically formed binary black hole mergers across cosmic space and time. We show that in the local universe, 10% of these binaries form as the result of gravitational-wave emission between unbound black holes during chaotic resonant encounters, with roughly half of those events having eccentricities detectable by current ground-based gravitational-wave detectors. The mergers that occur inside clusters typically have lower masses than binaries that were ejected from the cluster many Gyrs ago. Gravitational-wave captures from globular clusters contribute 1-2 Gpc(-3) yr(-1) to the binary merger rate in the local universe, increasing to greater than or similar to 10 Gpc(-3) yr(-1) at z similar to 3. Finally, we discuss some of the technical difficulties associated with post-Newtonian scattering encounters, and how care must be taken when measuring the binary parameters during a dynamical capture.
DOI10.1103/PhysRevD.98.123005
Language英语
Funding ProjectPappalardo Postdoctoral Fellowship at MIT ; NASA[NNX14AP92G] ; National Science Foundation Grant (NSF) at Northwestern University[AST-1716762] ; Ramon y Cajal Programme of the Ministry of Economy, Industry and Competitiveness of Spain ; COST Action GWverse[CA16104] ; Kavli Foundation ; DNRF ; NSF[PHY-1607611]
WOS Research AreaAstronomy & Astrophysics ; Physics
WOS SubjectAstronomy & Astrophysics ; Physics, Particles & Fields
WOS IDWOS:000452689300004
PublisherAMER PHYSICAL SOC
Citation statistics
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/32013
Collection中国科学院数学与系统科学研究院
Affiliation1.MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave,37-664H, Cambridge, MA 02139 USA
2.CSIC, ICE, Inst Space Sci, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain
3.IEEC, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain
4.Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
5.Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China
6.Tata Inst Fundamental Res, Dept Astron & Astrophys, Homi Bhaba Rd, Bombay 400005, Maharashtra, India
7.Northwestern Univ, CIERA, 2145 Sheridan Rd, Evanston, IL 60208 USA
8.Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA
9.Princeton Univ, Dept Astrophys Sci, Peyton Hall,4 Ivy Lane, Princeton, NJ 08544 USA
Recommended Citation
GB/T 7714
Rodriguez, Carl L.,Amaro-Seoane, Pau,Chatterjee, Sourav,et al. Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries[J]. PHYSICAL REVIEW D,2018,98(12):16.
APA Rodriguez, Carl L..,Amaro-Seoane, Pau.,Chatterjee, Sourav.,Kremer, Kyle.,Rasio, Frederic A..,...&Zevin, Michael.(2018).Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries.PHYSICAL REVIEW D,98(12),16.
MLA Rodriguez, Carl L.,et al."Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries".PHYSICAL REVIEW D 98.12(2018):16.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Rodriguez, Carl L.]'s Articles
[Amaro-Seoane, Pau]'s Articles
[Chatterjee, Sourav]'s Articles
Baidu academic
Similar articles in Baidu academic
[Rodriguez, Carl L.]'s Articles
[Amaro-Seoane, Pau]'s Articles
[Chatterjee, Sourav]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Rodriguez, Carl L.]'s Articles
[Amaro-Seoane, Pau]'s Articles
[Chatterjee, Sourav]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.