CSpace
 An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities He,Songnian; Dong,Qiao-Li 2018-12-18 Source Publication Journal of Inequalities and Applications ISSN 1029-242X Volume 2018Issue:1 Abstract AbstractLet C be a nonempty closed convex subset of a real Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document} with inner product ??,??\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle \cdot , \cdot \rangle$\end{document}, and let f:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: \mathcal{H}\rightarrow \mathcal{H}$\end{document} be a nonlinear operator. Consider the inverse variational inequality (in short, IVI(C,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{IVI}(C,f)$\end{document}) problem of finding a point ξ?∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\xi ^{*}\in \mathcal{H}$\end{document} such that f(ξ?)∈C,?ξ?,v?f(ξ?)?≥0,?v∈C.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\bigl(\xi ^{*}\bigr)\in C, \quad \bigl\langle \xi ^{*}, v-f \bigl(\xi ^{*}\bigr)\bigr\rangle \geq 0, \quad \forall v\in C.$$\end{document} In this paper, we prove that IVI(C,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{IVI}(C,f)$\end{document} has a unique solution if f is Lipschitz continuous and strongly monotone, which essentially improves the relevant result in (Luo and Yang in Optim. Lett. 8:1261–1272, 2014). Based on this result, an iterative algorithm, named the alternating contraction projection method (ACPM), is proposed for solving Lipschitz continuous and strongly monotone inverse variational inequalities. The strong convergence of the ACPM is proved and the convergence rate estimate is obtained. Furthermore, for the case that the structure of C is very complex and the projection operator PC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{C}$\end{document} is difficult to calculate, we introduce the alternating contraction relaxation projection method (ACRPM) and prove its strong convergence. Some numerical experiments are provided to show the practicability and effectiveness of our algorithms. Our results in this paper extend and improve the related existing results. Keyword Inverse variational inequality Variational inequality Lipschitz continuous Strongly monotone 47J20 90C25 90C30 90C52 DOI 10.1186/s13660-018-1943-0 Language 英语 WOS ID BMC:10.1186/s13660-018-1943-0 Publisher Springer International Publishing Citation statistics Document Type 期刊论文 Identifier http://ir.amss.ac.cn/handle/2S8OKBNM/31503 Collection 中国科学院数学与系统科学研究院 Corresponding Author Dong,Qiao-Li Affiliation Recommended CitationGB/T 7714 He,Songnian,Dong,Qiao-Li. An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities[J]. Journal of Inequalities and Applications,2018,2018(1). APA He,Songnian,&Dong,Qiao-Li.(2018).An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities.Journal of Inequalities and Applications,2018(1). MLA He,Songnian,et al."An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities".Journal of Inequalities and Applications 2018.1(2018).
 Files in This Item: There are no files associated with this item.
 Related Services Recommend this item Bookmark Usage statistics Export to Endnote Google Scholar Similar articles in Google Scholar [He,Songnian]'s Articles [Dong,Qiao-Li]'s Articles Baidu academic Similar articles in Baidu academic [He,Songnian]'s Articles [Dong,Qiao-Li]'s Articles Bing Scholar Similar articles in Bing Scholar [He,Songnian]'s Articles [Dong,Qiao-Li]'s Articles Terms of Use No data! Social Bookmark/Share