CSpace
J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence
Bufetov, Alexander I.1,2,3,4; Qiu, Yanqi5,6,7
2018-06-01
发表期刊MATHEMATISCHE ANNALEN
ISSN0025-5831
卷号371期号:1-2页码:127-188
摘要We study Palm measures of determinantal point processes with J-Hermitian correlation kernels. A point process on the punctured real line is said to be balanced rigid if for any precompact subset , the difference between the numbers of particles of a configuration inside and is almost surely determined by the configuration outside B. The point process is said to have the balanced Palm equivalence property if any reduced Palm measure conditioned at 2n distinct points, n in and n in , is equivalent to the . We formulate general criteria for determinantal point processes with J-Hermitian correlation kernels to be balanced rigid and to have the balanced Palm equivalence property and prove, in particular, that the determinantal point processes with Whittaker kernels of Borodin and Olshanski are balanced rigid and have the balanced Palm equivalence property.
DOI10.1007/s00208-017-1627-y
语种英语
资助项目A*MIDEX project - Programme "Investissements d'Avenir" of the Government of the French Republic[ANR-11-IDEX-0001-02] ; European Research Council (ERC) under the European Union's Horizon research and innovation programme[647133] ; Russian Federation[MD 5991.2016.1] ; Russian Academic Excellence Project '5-100' ; Programme "Investissements d'Avenir" of the Government of the French Republic[IDEX UNITI-ANR-11-IDEX-0002-02] ; Simons Foundation[346300] ; matching Polish MNiSW fund ; NSF of China[11688101]
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000430469800003
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/30195
专题中国科学院数学与系统科学研究院
通讯作者Qiu, Yanqi
作者单位1.Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR7373, 39 Rue F Juliot Curie, F-13453 Marseille, France
2.RAS, Steklov Math Inst, Moscow, Russia
3.Inst Informat Transmiss Problems, Moscow, Russia
4.Natl Res Univ Higher Sch Econ, Moscow, Russia
5.Univ Paul Sabatier, Inst Math Toulouse, CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France
6.Chinese Acad Sci, Inst Math, AMSS, Beijing, Peoples R China
7.Hua Loo Keng Key Lab Math, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Bufetov, Alexander I.,Qiu, Yanqi. J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence[J]. MATHEMATISCHE ANNALEN,2018,371(1-2):127-188.
APA Bufetov, Alexander I.,&Qiu, Yanqi.(2018).J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence.MATHEMATISCHE ANNALEN,371(1-2),127-188.
MLA Bufetov, Alexander I.,et al."J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence".MATHEMATISCHE ANNALEN 371.1-2(2018):127-188.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bufetov, Alexander I.]的文章
[Qiu, Yanqi]的文章
百度学术
百度学术中相似的文章
[Bufetov, Alexander I.]的文章
[Qiu, Yanqi]的文章
必应学术
必应学术中相似的文章
[Bufetov, Alexander I.]的文章
[Qiu, Yanqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。