CSpace
Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces
Li, Yinan1; Qiao, Youming1; Wang, Xin1; Duan, Runyao1,2
2018-03-01
发表期刊COMMUNICATIONS IN MATHEMATICAL PHYSICS
ISSN0010-3616
卷号358期号:2页码:791-814
摘要We study the problem of transforming a tripartite pure state to a bipartite one using stochastic local operations and classical communication (SLOCC). It is known that the tripartite-to-bipartite SLOCC convertibility is characterized by the maximal Schmidt rank of the given tripartite state, i.e. the largest Schmidt rank over those bipartite states lying in the support of the reduced density operator. In this paper, we further study this problem and exhibit novel results in both multi-copy and asymptotic settings, utilizing powerful results from the structure of matrix spaces. In the multi-copy regime, we observe that the maximal Schmidt rank is strictly super-multiplicative, i.e. the maximal Schmidt rank of the tensor product of two tripartite pure states can be strictly larger than the product of their maximal Schmidt ranks. We then provide a full characterization of those tripartite states whose maximal Schmidt rank is strictly super-multiplicative when taking tensor product with itself. Notice that such tripartite states admit strict advantages in tripartite-to-bipartite SLOCC transformation when multiple copies are provided. In the asymptotic setting, we focus on determining the tripartite-to-bipartite SLOCC entanglement transformation rate. Computing this rate turns out to be equivalent to computing the asymptotic maximal Schmidt rank of the tripartite state, defined as the regularization of its maximal Schmidt rank. Despite the difficulty caused by the super-multiplicative property, we provide explicit formulas for evaluating the asymptotic maximal Schmidt ranks of two important families of tripartite pure states by resorting to certain results of the structure of matrix spaces, including the study of matrix semi-invariants. These formulas turn out to be powerful enough to give a sufficient and necessary condition to determine whether a given tripartite pure state can be transformed to the bipartite maximally entangled state under SLOCC, in the asymptotic setting. Applying the recent progress on the non-commutative rank problem, we can verify this condition in deterministic polynomial time.
DOI10.1007/s00220-017-3077-5
语种英语
资助项目Australian Research Council[DP120103776] ; Australian Research Council[FT120100449] ; Australian Research Council[DE150100720]
WOS研究方向Physics
WOS类目Physics, Mathematical
WOS记录号WOS:000427467400009
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/29760
专题中国科学院数学与系统科学研究院
通讯作者Li, Yinan
作者单位1.Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia
2.Chinese Acad Sci, Acad Math & Syst Sci, UTS AMSS Joint Res Lab Quantum Computat & Quantum, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Yinan,Qiao, Youming,Wang, Xin,et al. Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces[J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS,2018,358(2):791-814.
APA Li, Yinan,Qiao, Youming,Wang, Xin,&Duan, Runyao.(2018).Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces.COMMUNICATIONS IN MATHEMATICAL PHYSICS,358(2),791-814.
MLA Li, Yinan,et al."Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces".COMMUNICATIONS IN MATHEMATICAL PHYSICS 358.2(2018):791-814.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yinan]的文章
[Qiao, Youming]的文章
[Wang, Xin]的文章
百度学术
百度学术中相似的文章
[Li, Yinan]的文章
[Qiao, Youming]的文章
[Wang, Xin]的文章
必应学术
必应学术中相似的文章
[Li, Yinan]的文章
[Qiao, Youming]的文章
[Wang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。