CSpace
A PROOF OF THE GILBERT-POLLAK CONJECTURE ON THE STEINER RATIO
DU, DZ; HWANG, FK
1992
Source PublicationALGORITHMICA
ISSN0178-4617
Volume7Issue:2-3Pages:121-135
AbstractLet P be a set of n points on the euclidean plane. Let L(s)(P) and L(m)(P) denote the lengths of the Steiner minimum tree and the minimum spanning tree on P, respectively. In 1968, Gilbert and Pollak conjectured that for any P, L(s)(P) greater-than-or-equal-to (square-root 3/2)L(m)(P). We provide a proof for their conjecture in this paper.
KeywordSTEINER TREES SPANNING TREES STEINER RATIO CONVEXITY HEXAGONAL TREES
Language英语
WOS Research AreaComputer Science ; Mathematics
WOS SubjectComputer Science, Software Engineering ; Mathematics, Applied
WOS IDWOS:A1992HA31400002
PublisherSPRINGER VERLAG
Citation statistics
Cited Times:113[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.amss.ac.cn/handle/2S8OKBNM/28206
Collection中国科学院数学与系统科学研究院
Affiliation1.CHINESE ACAD SCI,INST APPL MATH,BEIJING,PEOPLES R CHINA
2.AT&T BELL LABS,MURRAY HILL,NJ 07974
Recommended Citation
GB/T 7714
DU, DZ,HWANG, FK. A PROOF OF THE GILBERT-POLLAK CONJECTURE ON THE STEINER RATIO[J]. ALGORITHMICA,1992,7(2-3):121-135.
APA DU, DZ,&HWANG, FK.(1992).A PROOF OF THE GILBERT-POLLAK CONJECTURE ON THE STEINER RATIO.ALGORITHMICA,7(2-3),121-135.
MLA DU, DZ,et al."A PROOF OF THE GILBERT-POLLAK CONJECTURE ON THE STEINER RATIO".ALGORITHMICA 7.2-3(1992):121-135.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[DU, DZ]'s Articles
[HWANG, FK]'s Articles
Baidu academic
Similar articles in Baidu academic
[DU, DZ]'s Articles
[HWANG, FK]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[DU, DZ]'s Articles
[HWANG, FK]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.