On automorphisms of finite von Neumann algebras leaving invariant some reflexive lattices | |
Wu, Wenming1; Yuan, Wei2,3![]() | |
2017-06-01 | |
发表期刊 | BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
![]() |
ISSN | 0024-6093 |
卷号 | 49期号:3页码:369-379 |
摘要 | For a fixed double triangle lattice in a finite factor, we show that the subgroup of automorphisms of the factor leaving invariant the reflexive lattice generated by the double triangle lattice is isomorphic to a closed subgroup of SO(3). In particular, if the nontrivial projections in the lattice is free, then the group is explicitly determined as the symmetric group of 3 elements. |
关键词 | 46L40 46L54 (primary) |
DOI | 10.1112/blms.12032 |
语种 | 英语 |
资助项目 | NSFC[11271390] ; NSFC[11371222] ; NSFC[11301511] ; NSFC[11321101] ; NSFC[11371290] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000402144800001 |
出版者 | WILEY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/25592 |
专题 | 数学所 |
通讯作者 | Wu, Wenming |
作者单位 | 1.Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Wenming,Yuan, Wei. On automorphisms of finite von Neumann algebras leaving invariant some reflexive lattices[J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY,2017,49(3):369-379. |
APA | Wu, Wenming,&Yuan, Wei.(2017).On automorphisms of finite von Neumann algebras leaving invariant some reflexive lattices.BULLETIN OF THE LONDON MATHEMATICAL SOCIETY,49(3),369-379. |
MLA | Wu, Wenming,et al."On automorphisms of finite von Neumann algebras leaving invariant some reflexive lattices".BULLETIN OF THE LONDON MATHEMATICAL SOCIETY 49.3(2017):369-379. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wu, Wenming]的文章 |
[Yuan, Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wu, Wenming]的文章 |
[Yuan, Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wu, Wenming]的文章 |
[Yuan, Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论