RICCI CURVATURES ON HERMITIAN MANIFOLDS | |
Liu, Kefeng1,2; Yang, Xiaokui3,4![]() | |
2017-07-01 | |
发表期刊 | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
![]() |
ISSN | 0002-9947 |
卷号 | 369期号:7页码:5157-5196 |
摘要 | In this paper, we introduce the first Aeppli-Chern class for complex manifolds and show that the (1, 1)-component of the curvature 2-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. We systematically investigate the relationship between a variety of Ricci curvatures on Hermitian manifolds and the background Riemannian manifolds. Moreover, we study non-Kahler Calabi-Yau manifolds by using the first Aeppli-Chern class and the Levi-Civita Ricci-flat metrics. In particular, we construct explicit Levi-Civita Ricci-flat metrics on Hopf manifolds S2n-1 x S-1. We also construct a smooth family of Gauduchon metrics on a compact Hermitian manifold such that the metrics are in the same first Aeppli-Chern class, and their first Chern-Ricci curvatures are the same and non-negative, but their Riemannian scalar curvatures are constant and vary smoothly between negative infinity and a positive number. In particular, it shows that Hermitian manifolds with non-negative first Chern class can admit Hermitian metrics with strictly negative Riemannian scalar curvature. |
DOI | 10.1090/tran/7000 |
语种 | 英语 |
资助项目 | NSF ; China's Recruitment Program of Global Experts and National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000399164000023 |
出版者 | AMER MATHEMATICAL SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/25235 |
专题 | 数学所 |
通讯作者 | Liu, Kefeng |
作者单位 | 1.Capital Normal Univ, Dept Math, Beijing 100048, Peoples R China 2.Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA 3.Chinese Acad Sci, Morningside Ctr Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China 4.Chinese Acad Sci, Hua Loo Keng Key Lab Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Kefeng,Yang, Xiaokui. RICCI CURVATURES ON HERMITIAN MANIFOLDS[J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY,2017,369(7):5157-5196. |
APA | Liu, Kefeng,&Yang, Xiaokui.(2017).RICCI CURVATURES ON HERMITIAN MANIFOLDS.TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY,369(7),5157-5196. |
MLA | Liu, Kefeng,et al."RICCI CURVATURES ON HERMITIAN MANIFOLDS".TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 369.7(2017):5157-5196. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Kefeng]的文章 |
[Yang, Xiaokui]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Kefeng]的文章 |
[Yang, Xiaokui]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Kefeng]的文章 |
[Yang, Xiaokui]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论