CSpace
A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations
Wan, Xiaoliang1,2; Yu, Haijun3,4
2017-02-15
发表期刊JOURNAL OF COMPUTATIONAL PHYSICS
ISSN0021-9991
卷号331页码:209-226
摘要This paper discusses the necessity and strategy to unify the development of a dynamic solver and a minimum action method (MAM) for a spatially extended system when employing the large deviation principle (LDP) to study the effects of small random perturbations. A dynamic solver is used to approximate the unperturbed system, and a minimum action method is used to approximate the LDP, which corresponds to solving an Euler-Lagrange equation related to but more complicated than the unperturbed system. We will clarify possible inconsistencies induced by independent numerical approximations of the unperturbed system and the LDP, based on which we propose to define both the dynamic solver and the MAM on the same approximation space for spatial discretization. The semi-discrete LDP can then be regarded as the exact LDP of the semi-discrete unperturbed system, which is a finite-dimensional ODE system. We achieve this methodology for the two-dimensional Navier-Stokes equations using a divergence free approximation space. The method developed can be used to study the nonlinear instability of wall-bounded parallel shear flows, and be generalized straightforwardly to three-dimensional cases. Numerical experiments are presented. (C) 2016 Elsevier Inc. All rights reserved.
关键词Minimum action method Rare events White noise Colored noise Finite element method Numerical adaptivity
DOI10.1016/j.jcp.2016.11.019
语种英语
资助项目AFOSR Grant[FA9550-15-1-0051] ; NSF Grant[DMS-1620026] ; NNSFC Grants[11101413] ; NNSFC Grants[11371358] ; Major Program of NNSFC Grant[91530322]
WOS研究方向Computer Science ; Physics
WOS类目Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号WOS:000393250700011
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/24681
专题中国科学院数学与系统科学研究院
通讯作者Wan, Xiaoliang
作者单位1.Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
2.Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
3.Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS, Beijing 100190, Peoples R China
4.Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wan, Xiaoliang,Yu, Haijun. A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2017,331:209-226.
APA Wan, Xiaoliang,&Yu, Haijun.(2017).A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations.JOURNAL OF COMPUTATIONAL PHYSICS,331,209-226.
MLA Wan, Xiaoliang,et al."A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations".JOURNAL OF COMPUTATIONAL PHYSICS 331(2017):209-226.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wan, Xiaoliang]的文章
[Yu, Haijun]的文章
百度学术
百度学术中相似的文章
[Wan, Xiaoliang]的文章
[Yu, Haijun]的文章
必应学术
必应学术中相似的文章
[Wan, Xiaoliang]的文章
[Yu, Haijun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。