KMS Of Academy of mathematics and systems sciences, CAS
On Friedrichs-Poincare-type inequalities | |
Zheng, WY![]() | |
2005-04-15 | |
发表期刊 | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
![]() |
ISSN | 0022-247X |
卷号 | 304期号:2页码:542-551 |
摘要 | Friedrichs- and Poincare-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H-1 (Omega) and Poincare-type inequalities in some subspaces of W-1,W-p (Omega). The dependencies of the inequality coefficients on the domain Omega and some sub-domains are illustrated explicitly. (c) 2004 Elsevier Inc. All rights reserved. |
关键词 | Friedrichs-type inequality Poincare-type inequality direct proof Sobolev space |
DOI | 10.1016/j.jmaa.2004.09.066 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000228022000009 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/2145 |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Zheng, WY |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China 2.Chinese Acad Sci, Bur Basic Res, Beijing 100864, Peoples R China |
推荐引用方式 GB/T 7714 | Zheng, WY,Qi, H. On Friedrichs-Poincare-type inequalities[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2005,304(2):542-551. |
APA | Zheng, WY,&Qi, H.(2005).On Friedrichs-Poincare-type inequalities.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,304(2),542-551. |
MLA | Zheng, WY,et al."On Friedrichs-Poincare-type inequalities".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 304.2(2005):542-551. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zheng, WY]的文章 |
[Qi, H]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zheng, WY]的文章 |
[Qi, H]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zheng, WY]的文章 |
[Qi, H]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论