CSpace  > 应用数学研究所
Dimension reduction based linear surrogate variable approach for model free variable selection
Dai, Pengjie1; Ding, Xiaobo2; Wang, Qihua2,3
2016-02-01
发表期刊JOURNAL OF STATISTICAL PLANNING AND INFERENCE
ISSN0378-3758
卷号169页码:13-26
摘要Most of variable selection methods depend on the model assumptions, while sufficient dimension reduction is a nonparametric method to deal with high dimensional data. In this paper we aim at integrating sufficient dimension reduction into variable selection. A two stage procedure is proposed. First, we obtain dimension reduction directions and integrate them to construct a variable which is linearly dependent on predictors. Then by treating this constructed variable as a new response, we use the traditional variable selection methods such as adaptive LASSO to conduct variable selection. We call such a procedure as dimension reduction based linear surrogate variable (LSV) method. To illustrate that it has wide application, we also apply it to variable selection for the problem of missing responses. Extensive simulation studies show that it is more robust than the variable selection methods depending on model assumptions, and more efficient than the other model-free variable selection methods. Another advantage of the LSV is that it can be easily implemented. A real example is given to illustrate the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
关键词Adaptive LASSO Central subspace Linear surrogate variable Sufficient dimension reduction Variable selection
DOI10.1016/j.jspi.2015.07.001
语种英语
资助项目Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health)[U01 AG024904] ; National Institute on Aging ; National Institute of Biomedical Imaging and Bioengineering ; National Natural Science Foundation of China[11201457] ; National Natural Science Foundation of China[11171331] ; National Science Fund for Distinguished Young Scholars in China[10725106] ; National Science Fund for Creative Research Groups in China ; Natural Science Foundation ; Key Lab of Random Complex Structure and Data Science ; National Center for Mathematics and Interdisciplinary Sciences, CAS
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000363827800002
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/21097
专题应用数学研究所
通讯作者Wang, Qihua
作者单位1.Renmin Univ China, Sch Business, Beijing 100872, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
3.Shenzhen Univ, Inst Stat Sci, Shenzhen 518006, Peoples R China
推荐引用方式
GB/T 7714
Dai, Pengjie,Ding, Xiaobo,Wang, Qihua. Dimension reduction based linear surrogate variable approach for model free variable selection[J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE,2016,169:13-26.
APA Dai, Pengjie,Ding, Xiaobo,&Wang, Qihua.(2016).Dimension reduction based linear surrogate variable approach for model free variable selection.JOURNAL OF STATISTICAL PLANNING AND INFERENCE,169,13-26.
MLA Dai, Pengjie,et al."Dimension reduction based linear surrogate variable approach for model free variable selection".JOURNAL OF STATISTICAL PLANNING AND INFERENCE 169(2016):13-26.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dai, Pengjie]的文章
[Ding, Xiaobo]的文章
[Wang, Qihua]的文章
百度学术
百度学术中相似的文章
[Dai, Pengjie]的文章
[Ding, Xiaobo]的文章
[Wang, Qihua]的文章
必应学术
必应学术中相似的文章
[Dai, Pengjie]的文章
[Ding, Xiaobo]的文章
[Wang, Qihua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。