CSpace
New error estimates of Adini's elements for Poisson's equation
Huang, HT; Li, ZC; Yan, NN
2004-07-01
发表期刊APPLIED NUMERICAL MATHEMATICS
ISSN0168-9274
卷号50期号:1页码:49-74
摘要In this paper, we report some new discoveries of Adini's elements for Poisson's equation in error estimates, stability analysis and global superconvergence. It is well known that the optimal convergence rate \\u - u(/1)\\(1) = O(h(3)\u\(4)) can be obtained, where u(/1) and u are the Adini's solution and the true solution, respectively. In this paper, for all kinds of boundary conditions of Poisson's equations, the supercloseness parallel tou(I)(A)-u(/1)parallel to = O(h(3.5)parallel touparallel to(5)) can be obtained for uniform rectangles rectangle(ij), where u A is the Adini's interpolation of the true solution u. Moreover, for the Neumann problems of Poisson's equation, new treatments adding the explicit natural constraints (u(n))(ij) = g(ij) on the boundary are proposed to yield the Adini's solution u(ji)* having supercloseness parallel tou(I)(A) - u* parallel to(I) = O(h(4)parallel touparallel to(5)). Hence, the global superconvergence parallel tou - Pi(5)u(h)(*) = O(h(4)parallel touparallel to(5)) can be achieved, where Pi5u(h)(*) is an a posteriori interpolant of polynomials with order five based on the obtained solution u*. New basic estimates of errors are derived for Adini's elements. Numerical experiments in this paper are also provided to verify the supercloseness and superconvergences, O(h(3.5)) and O(h(4)), and the standard condition number O(h(-2)). It is worthy pointing out that for the Neumann problems on rectangular domains, the traditional finite element method is not as good as the newly proposed method interpolating the Neumann condition in this paper. Not only is the new method more accurate, but also economical in computation, as the discrete system has less unknowns. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
关键词Adini's elements Neumann problems Poisson's equation global superconvergence stability analysis
DOI10.1016/j.apnum.2003.10.009
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000221648600003
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/19520
专题中国科学院数学与系统科学研究院
通讯作者Li, ZC
作者单位1.Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
2.Acad Sinica, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Huang, HT,Li, ZC,Yan, NN. New error estimates of Adini's elements for Poisson's equation[J]. APPLIED NUMERICAL MATHEMATICS,2004,50(1):49-74.
APA Huang, HT,Li, ZC,&Yan, NN.(2004).New error estimates of Adini's elements for Poisson's equation.APPLIED NUMERICAL MATHEMATICS,50(1),49-74.
MLA Huang, HT,et al."New error estimates of Adini's elements for Poisson's equation".APPLIED NUMERICAL MATHEMATICS 50.1(2004):49-74.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, HT]的文章
[Li, ZC]的文章
[Yan, NN]的文章
百度学术
百度学术中相似的文章
[Huang, HT]的文章
[Li, ZC]的文章
[Yan, NN]的文章
必应学术
必应学术中相似的文章
[Huang, HT]的文章
[Li, ZC]的文章
[Yan, NN]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。