CSpace  > 计算数学与科学工程计算研究所
Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem
Zhang, S
2004-11-05
发表期刊APPLIED MATHEMATICS AND COMPUTATION
ISSN0096-3003
卷号158期号:2页码:307-317
摘要In this paper, a class of preconditioners for GMRES method are proposed for solving linear systems arising from discretization second-order nonsymmetric and indefinite elliptic problems by finite element method. The convergence of GMRES method is verified and the rate of convergence is shown. The generality of our result enables us to apply not only any known preconditioners designed for symmetric positive definite problems, but also many other preconditioners based on original operator to nonsymmetric and indefinite problems without losing optimality. (C) 2003 Published by Elsevier Inc.
关键词preconditioned GMRES method nonsymmetric and indefinite elliptic problem finite element method
DOI10.1016/j.amc.2003.08.121
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000224594700002
出版者ELSEVIER SCIENCE INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/19224
专题计算数学与科学工程计算研究所
通讯作者Zhang, S
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Computing, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zhang, S. Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem[J]. APPLIED MATHEMATICS AND COMPUTATION,2004,158(2):307-317.
APA Zhang, S.(2004).Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem.APPLIED MATHEMATICS AND COMPUTATION,158(2),307-317.
MLA Zhang, S."Preconditioned GMRES methods for discretization equation of nonsymmetric and indefinite elliptic problem".APPLIED MATHEMATICS AND COMPUTATION 158.2(2004):307-317.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, S]的文章
百度学术
百度学术中相似的文章
[Zhang, S]的文章
必应学术
必应学术中相似的文章
[Zhang, S]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。