KMS Of Academy of mathematics and systems sciences, CAS
Infinite dimensional Lie algebras of type L | |
Osborn, JM; Zhao, KM | |
2003 | |
发表期刊 | COMMUNICATIONS IN ALGEBRA
![]() |
ISSN | 0092-7872 |
卷号 | 31期号:5页码:2445-2469 |
摘要 | In this paper, a class of infinite dimensional Lie algebras L(A, delta, alpha) over a field of characteristic 0 are studied. These Lie algebras, which we call here Lie algebras of type L, arose as one subclass in the recent classification of generalized Block algebras. We exhibit a large subclass of these algebras which are simple, as well as another subclass of these algebras which are never simple. For n > 1, simple Lie algebras of type L do not occur in any other known class of simple Lie algebras. In particular, for n > 1, these algebras have no toral elements. Simplicity in these algebras is equivalent to simplicity of an appropriate subalgebra. The notion of transitive ideal plays an important role in this theory. |
关键词 | cartan type Lie algebras Lie algebras of type L simple Lie algebras torus transitive ideal |
DOI | 10.1081/AGB-120019006 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000183015100023 |
出版者 | MARCEL DEKKER INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/18975 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zhao, KM |
作者单位 | 1.Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China 2.Univ Wisconsin, Dept Math, Madison, WI 53706 USA |
推荐引用方式 GB/T 7714 | Osborn, JM,Zhao, KM. Infinite dimensional Lie algebras of type L[J]. COMMUNICATIONS IN ALGEBRA,2003,31(5):2445-2469. |
APA | Osborn, JM,&Zhao, KM.(2003).Infinite dimensional Lie algebras of type L.COMMUNICATIONS IN ALGEBRA,31(5),2445-2469. |
MLA | Osborn, JM,et al."Infinite dimensional Lie algebras of type L".COMMUNICATIONS IN ALGEBRA 31.5(2003):2445-2469. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Osborn, JM]的文章 |
[Zhao, KM]的文章 |
百度学术 |
百度学术中相似的文章 |
[Osborn, JM]的文章 |
[Zhao, KM]的文章 |
必应学术 |
必应学术中相似的文章 |
[Osborn, JM]的文章 |
[Zhao, KM]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论