KMS Of Academy of mathematics and systems sciences, CAS
B-convergence of general linear methods for stiff problems | |
Huang, CM; Chang, QS; Xiao, AG | |
2003-10-01 | |
发表期刊 | APPLIED NUMERICAL MATHEMATICS
![]() |
ISSN | 0168-9274 |
卷号 | 47期号:1页码:31-44 |
摘要 | This paper is concerned with the numerical solution of stiff initial value problems for systems of ordinary differential equations by general linear methods. We prove that algebraic stability together with strict stability at infinity implies B-convergence for strictly dissipative systems and that the order of B-convergence of a method is equal to the generalized stage order, where the generalized stage order is not less than the stage order, which extends the relevant results on Runge-Kutta methods. As applications of this result, B-convergence results of some classes of multistep Runge-Kutta methods are obtained. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved. |
关键词 | stiff ordinary differential equations B-convergence general linear methods multistep Runge-Kutta methods |
DOI | 10.1016/S0168-9274(03)00051-5 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000185390100002 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/18173 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, CM |
作者单位 | 1.Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China 2.Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China 3.Xiangtan Univ, Dept Math, Pune 411005, Maharashtra, India |
推荐引用方式 GB/T 7714 | Huang, CM,Chang, QS,Xiao, AG. B-convergence of general linear methods for stiff problems[J]. APPLIED NUMERICAL MATHEMATICS,2003,47(1):31-44. |
APA | Huang, CM,Chang, QS,&Xiao, AG.(2003).B-convergence of general linear methods for stiff problems.APPLIED NUMERICAL MATHEMATICS,47(1),31-44. |
MLA | Huang, CM,et al."B-convergence of general linear methods for stiff problems".APPLIED NUMERICAL MATHEMATICS 47.1(2003):31-44. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论