CSpace
Global attractivity of nonautonomous stage-structured population models with dispersal
Lu, ZH; Chi, XB; Chen, LS
2003-12-01
发表期刊DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS
ISSN1201-3390
卷号10期号:6页码:917-930
摘要The nonautonomous single species dispersal model in an N-patch environment is considered, in which each individual member of the population has a life history that takes them through two stages, immature and mature. By using the theory of monotone and concave operators to functional differential equations, we prove that there exists unique positive periodic solution attracting all positive solutions.
关键词Stage Structure dispersal periodic solution monotone operator concave operator
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000186131800005
出版者WATAM PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/18047
专题中国科学院数学与系统科学研究院
通讯作者Lu, ZH
作者单位1.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100080, Peoples R China
2.Xian Inst Finance & Econ, Dept Stat, Xian 710061, Peoples R China
3.Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Lu, ZH,Chi, XB,Chen, LS. Global attractivity of nonautonomous stage-structured population models with dispersal[J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS,2003,10(6):917-930.
APA Lu, ZH,Chi, XB,&Chen, LS.(2003).Global attractivity of nonautonomous stage-structured population models with dispersal.DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS,10(6),917-930.
MLA Lu, ZH,et al."Global attractivity of nonautonomous stage-structured population models with dispersal".DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS 10.6(2003):917-930.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, ZH]的文章
[Chi, XB]的文章
[Chen, LS]的文章
百度学术
百度学术中相似的文章
[Lu, ZH]的文章
[Chi, XB]的文章
[Chen, LS]的文章
必应学术
必应学术中相似的文章
[Lu, ZH]的文章
[Chi, XB]的文章
[Chen, LS]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。