CSpace
Linear maps on von Neumann algebras preserving zero products or tr-rank
Cui, JL; Hou, JC
2002-02-01
发表期刊BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY
ISSN0004-9727
卷号65期号:1页码:79-91
摘要In this paper, we give some characterisations of homomorphisms on von Neumann algebras by linear preservers. We prove that a bounded linear surjective map from a von Neumann algebra onto another is zero-product preserving if and only if it is a homomorphism multiplied by an invertible element in the centre of the image algebra. By introducing the notion of tr-rank of the elements in finite von Neumann algebras, we show that a unital linear map from a linear subspace M of a finite von Neumann algebra R into R can be extended to an algebraic homomorphism from the subalgebra generated by M into R; and a unital self-adjoint linear map from a finite von Neumann algebra onto itself is completely tr-rank preserving if and only if it is a spatial *-automorphism.
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000174530100009
出版者AUSTRALIAN MATHEMATICS PUBL ASSOC INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/17772
专题中国科学院数学与系统科学研究院
作者单位1.Chinese Acad Sci, Math Inst, Beijing 100080, Peoples R China
2.Taiyuan Univ Technol, Dept Math Appl, Taiyuan 030024, Peoples R China
3.Shanxi Teachers Univ, Dept Math, Linfen 041004, Peoples R China
推荐引用方式
GB/T 7714
Cui, JL,Hou, JC. Linear maps on von Neumann algebras preserving zero products or tr-rank[J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY,2002,65(1):79-91.
APA Cui, JL,&Hou, JC.(2002).Linear maps on von Neumann algebras preserving zero products or tr-rank.BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY,65(1),79-91.
MLA Cui, JL,et al."Linear maps on von Neumann algebras preserving zero products or tr-rank".BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY 65.1(2002):79-91.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui, JL]的文章
[Hou, JC]的文章
百度学术
百度学术中相似的文章
[Cui, JL]的文章
[Hou, JC]的文章
必应学术
必应学术中相似的文章
[Cui, JL]的文章
[Hou, JC]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。