CSpace
The spectrally bounded linear maps on operator algebras
Cui, J; Hou, J
2002
发表期刊STUDIA MATHEMATICA
ISSN0039-3223
卷号150期号:3页码:261-271
摘要We show that every spectrally bounded linear map Phi from a Banach algebra onto a standard operator algebra acting on a complex Banach space is square-zero preserving. This result is used to show that if Phi(2) is spectrally bounded, then Phi is a homomorphism multiplied by a nonzero complex number. As another application to the Hilbert space case, a classification theorem is obtained which states that every spectrally bounded linear bijection Phi from B(I-I) onto B(K), where H and K are infinite-dimensional complex Hilbert spaces, is either an isomorphism or an anti-isomorphism multiplied by a nonzero complex number. If P is not injective, then Phi vanishes at all compact operators.
关键词spectral radius Jordan homomorphism isomorphism Banach algebras
语种英语
WOS研究方向Mathematics
WOS类目Mathematics
WOS记录号WOS:000179180800004
出版者POLISH ACAD SCIENCES INST MATHEMATICS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/17319
专题中国科学院数学与系统科学研究院
通讯作者Cui, J
作者单位1.Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
2.Shandong Teachers Univ, Dept Math, Linfen 041004, Peoples R China
3.Shanxi Univ, Dept Math, Tiyuan 030000, Peoples R China
推荐引用方式
GB/T 7714
Cui, J,Hou, J. The spectrally bounded linear maps on operator algebras[J]. STUDIA MATHEMATICA,2002,150(3):261-271.
APA Cui, J,&Hou, J.(2002).The spectrally bounded linear maps on operator algebras.STUDIA MATHEMATICA,150(3),261-271.
MLA Cui, J,et al."The spectrally bounded linear maps on operator algebras".STUDIA MATHEMATICA 150.3(2002):261-271.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui, J]的文章
[Hou, J]的文章
百度学术
百度学术中相似的文章
[Cui, J]的文章
[Hou, J]的文章
必应学术
必应学术中相似的文章
[Cui, J]的文章
[Hou, J]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。