KMS Of Academy of mathematics and systems sciences, CAS
The spectrally bounded linear maps on operator algebras | |
Cui, J; Hou, J | |
2002 | |
发表期刊 | STUDIA MATHEMATICA
![]() |
ISSN | 0039-3223 |
卷号 | 150期号:3页码:261-271 |
摘要 | We show that every spectrally bounded linear map Phi from a Banach algebra onto a standard operator algebra acting on a complex Banach space is square-zero preserving. This result is used to show that if Phi(2) is spectrally bounded, then Phi is a homomorphism multiplied by a nonzero complex number. As another application to the Hilbert space case, a classification theorem is obtained which states that every spectrally bounded linear bijection Phi from B(I-I) onto B(K), where H and K are infinite-dimensional complex Hilbert spaces, is either an isomorphism or an anti-isomorphism multiplied by a nonzero complex number. If P is not injective, then Phi vanishes at all compact operators. |
关键词 | spectral radius Jordan homomorphism isomorphism Banach algebras |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000179180800004 |
出版者 | POLISH ACAD SCIENCES INST MATHEMATICS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/17319 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Cui, J |
作者单位 | 1.Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China 2.Shandong Teachers Univ, Dept Math, Linfen 041004, Peoples R China 3.Shanxi Univ, Dept Math, Tiyuan 030000, Peoples R China |
推荐引用方式 GB/T 7714 | Cui, J,Hou, J. The spectrally bounded linear maps on operator algebras[J]. STUDIA MATHEMATICA,2002,150(3):261-271. |
APA | Cui, J,&Hou, J.(2002).The spectrally bounded linear maps on operator algebras.STUDIA MATHEMATICA,150(3),261-271. |
MLA | Cui, J,et al."The spectrally bounded linear maps on operator algebras".STUDIA MATHEMATICA 150.3(2002):261-271. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Cui, J]的文章 |
[Hou, J]的文章 |
百度学术 |
百度学术中相似的文章 |
[Cui, J]的文章 |
[Hou, J]的文章 |
必应学术 |
必应学术中相似的文章 |
[Cui, J]的文章 |
[Hou, J]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论