CSpace
Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs
Li, ZC; Yan, NN
2001-10-01
发表期刊APPLIED NUMERICAL MATHEMATICS
ISSN0168-9274
卷号39期号:1页码:61-85
摘要In this paper, consider biharmonic equations and 31) blending surfaces, and choose the bi-cubic Hermite elements to seek their approximate solutions. We pursue not only the global superconvergence originated in Lin and his colleagues (Lin, 1994; Lin and Luo, 1995; Lin and Yan, 1996), but also better numerical stability. The boundary penalty plus hybrid integrals are employed to satisfy the normal derivative boundary conditions. Compared with the penalty finite methods (BP-FEM) of bi-cubic Hermite elements in (Li, 1998, 1999; Li and Chang, 1999), the merit of the new methods in this paper is reduction of a's values thus to improve numerical stability. Suppose that the solution domain Omega can be split into small rectangles square (ij). The global superconvergence O(h(2.5)) and O(h(3.5)) in H-2 norms are achieved for quasiuniform and uniform square (ij), respectively. Both cases yield the optimal condition number O(h(-4)), compared with O(h(-6)) and O(h(-8)) in (Li, 1999; Li and Chang, 1999). This is an important improvement of stability for biharmonic solutions. However, for 31) blending surfaces, only the global superconvergence O(h3) is achieved for uniform square (ij). Morever, numerical experiments are provided for biharmonic equations to support the high superconvergence O(h(3.5)) involving the natural boundary condition for uniform square (ij) with parameter mu epsilon [0, 1] This paper manifests a great flexibility of global superconvegence in applications. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
关键词blending surfaces biharmonic equation bi-cubic Hermite element boundary penalty methods boundary hybrid techniques superconvergence stability
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000171204800005
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/16238
专题中国科学院数学与系统科学研究院
通讯作者Li, ZC
作者单位1.Natl Sun Yat Sen Univ, Dept Math Appl, Kaohsiung 80242, Taiwan
2.Acad Sinica, Acad Math & Syst Sci, Inst Syst Sci, Beijing 10080, Peoples R China
推荐引用方式
GB/T 7714
Li, ZC,Yan, NN. Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs[J]. APPLIED NUMERICAL MATHEMATICS,2001,39(1):61-85.
APA Li, ZC,&Yan, NN.(2001).Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs.APPLIED NUMERICAL MATHEMATICS,39(1),61-85.
MLA Li, ZC,et al."Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs".APPLIED NUMERICAL MATHEMATICS 39.1(2001):61-85.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, ZC]的文章
[Yan, NN]的文章
百度学术
百度学术中相似的文章
[Li, ZC]的文章
[Yan, NN]的文章
必应学术
必应学术中相似的文章
[Li, ZC]的文章
[Yan, NN]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。