KMS Of Academy of mathematics and systems sciences, CAS
On the second greedy weight for linear codes of dimension 3 | |
Chen, WD; Klove, T | |
2001-10-28 | |
发表期刊 | DISCRETE MATHEMATICS
![]() |
ISSN | 0012-365X |
卷号 | 241期号:1-3页码:171-187 |
摘要 | The difference g(2) - d(2) for a q-ary linear [n, 3, d] code C is studied. Here d(2) is the second generalized Hamming weight, that is, the smallest size of the support of a 2-dimensional subcode of C, and g(2) is the second greedy weight, that is, the smallest size of the support of a 2-dimensional subcode of C which contains a codeword of weight d. For codes of dimension 3, it is shown that the problem is essentially equivalent to finding certain weighting of the points in the projective plane, and weighting which give the maximal value of g(2) - d(2) are determined in almost all cases. In particular max(g(2) - d(2)) is determined in all cases for q less than or equal to 9. (C) 2001 Elsevier Science B.V. All rights reserved. |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:000171917500016 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/16064 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Klove, T |
作者单位 | 1.Univ Bergen, HIB, Dept Informat, N-5020 Bergen, Norway 2.Acad Sinica, Acad Math & Syst Sci, Inst Syst Sci, Syst & Control Lab, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, WD,Klove, T. On the second greedy weight for linear codes of dimension 3[J]. DISCRETE MATHEMATICS,2001,241(1-3):171-187. |
APA | Chen, WD,&Klove, T.(2001).On the second greedy weight for linear codes of dimension 3.DISCRETE MATHEMATICS,241(1-3),171-187. |
MLA | Chen, WD,et al."On the second greedy weight for linear codes of dimension 3".DISCRETE MATHEMATICS 241.1-3(2001):171-187. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, WD]的文章 |
[Klove, T]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, WD]的文章 |
[Klove, T]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, WD]的文章 |
[Klove, T]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论