CSpace
The relaxing schemes for Hamilton-Jacobi equations
Tang, HZ; Wu, HM
2001-05-01
发表期刊JOURNAL OF COMPUTATIONAL MATHEMATICS
ISSN0254-9409
卷号19期号:3页码:231-240
摘要Hamilton-Jacobi equation appears frequently in applications, e.g., in differential games and control theory, and is closely related to hyperbolic conservation laws[3, 4, 12]. This is helpful in the design of difference approximations for Hamilton-Jacobi equation and hyperbolic conservation laws. In this paper we present the relaxing system for Hamilton-Jacobi equations in arbitrary space dimensions, and high resolution relaxing schemes for Hamilton-Jacobi equation, based on using the local relaxation approximation. The schemes are numerically tested on a variety of 1D and 2D problems, including a problem related to optimal control problem. High-order accuracy in smooth regions, good resolution of discontinuities, and convergence to viscosity solutions are observed.
关键词the relaxing scheme the relaxing systems Hamilton-Jacobi equation hyperbolic conservation laws
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000169371600002
出版者VSP BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/16043
专题中国科学院数学与系统科学研究院
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China
2.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Tang, HZ,Wu, HM. The relaxing schemes for Hamilton-Jacobi equations[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2001,19(3):231-240.
APA Tang, HZ,&Wu, HM.(2001).The relaxing schemes for Hamilton-Jacobi equations.JOURNAL OF COMPUTATIONAL MATHEMATICS,19(3),231-240.
MLA Tang, HZ,et al."The relaxing schemes for Hamilton-Jacobi equations".JOURNAL OF COMPUTATIONAL MATHEMATICS 19.3(2001):231-240.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tang, HZ]的文章
[Wu, HM]的文章
百度学术
百度学术中相似的文章
[Tang, HZ]的文章
[Wu, HM]的文章
必应学术
必应学术中相似的文章
[Tang, HZ]的文章
[Wu, HM]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。