CSpace
Some results on parameter estimation in extended growth curve models
Wu, QG
2000-08-01
发表期刊JOURNAL OF STATISTICAL PLANNING AND INFERENCE
ISSN0378-3758
卷号88期号:2页码:285-300
摘要In this paper, estimation of parameters in extended growth curve models with arbitrary covariance matrix or uniform covariance structure or serial covariance structure is studied. Admissibility and minimaxity of the least-squares estimator of regression coefficients under matrix loss are derived. The necessary and sufficient existence conditions are obtained for the uniformly minimum risk equivariant (UMRE) estimator of regression coefficients under an affine group and a transitive group of transformations with quadratic loss and matrix loss, respectively. It is proved that no UMRE estimators of the covariance matrix V and the trace of V exist. The maximum likelihood estimator of parameters under some conditions is also discussed. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: primary 62H12; secondary 62F11.
关键词uniformly minimum risk equivariant estimator admissible estimator minimax estimator maximum likelihood estimator quadratic loss matrix loss
语种英语
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000088193000010
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/15635
专题中国科学院数学与系统科学研究院
作者单位Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wu, QG. Some results on parameter estimation in extended growth curve models[J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE,2000,88(2):285-300.
APA Wu, QG.(2000).Some results on parameter estimation in extended growth curve models.JOURNAL OF STATISTICAL PLANNING AND INFERENCE,88(2),285-300.
MLA Wu, QG."Some results on parameter estimation in extended growth curve models".JOURNAL OF STATISTICAL PLANNING AND INFERENCE 88.2(2000):285-300.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, QG]的文章
百度学术
百度学术中相似的文章
[Wu, QG]的文章
必应学术
必应学术中相似的文章
[Wu, QG]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。