CSpace
Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems
Bai, ZZ
2000-03-15
发表期刊APPLIED MATHEMATICS AND COMPUTATION
ISSN0096-3003
卷号109期号:2-3页码:273-285
摘要The convergence of the Krylov subspace methods, e.g., Full Orthogonal Method (FOM) and Generalized Minimal Residual Method (GMRES), etc., for solving large non-Hermitian linear systems is studied in a unified and detailed way when the coefficient matrix is defective; in particular, when its spectrum lies in the open right (left) half plane or is on the real axis. Related theoretical error bounds are established, which reveal some intrinsic relationships between the convergence properties and the eigen-characteristics of the coefficient matrix. These results not only generalize all the known ones for the diagonalizable matrices in the literature, but also sharp the corresponding estimates in Jia (Acta Mathematica Sinica (New Series) 14 (1998) 507-518). (C) 2000 Elsevier Science Inc. All rights reserved. AMS classifications: 65F10; 41A10.
关键词non-Hermitian linear systems convergence property Krylov subspace method the Chebyshev polynomials error bound
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000085105100013
出版者ELSEVIER SCIENCE INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/15593
专题中国科学院数学与系统科学研究院
通讯作者Bai, ZZ
作者单位Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Bai, ZZ. Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems[J]. APPLIED MATHEMATICS AND COMPUTATION,2000,109(2-3):273-285.
APA Bai, ZZ.(2000).Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems.APPLIED MATHEMATICS AND COMPUTATION,109(2-3),273-285.
MLA Bai, ZZ."Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems".APPLIED MATHEMATICS AND COMPUTATION 109.2-3(2000):273-285.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bai, ZZ]的文章
百度学术
百度学术中相似的文章
[Bai, ZZ]的文章
必应学术
必应学术中相似的文章
[Bai, ZZ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。