CSpace
Fucik spectrum, sign-changing, and multiple solutions for semilinear elliptic boundary value problems with resonance at infinity
Dancer, EN; Zhang, ZT
2000-10-15
发表期刊JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN0022-247X
卷号250期号:2页码:449-464
摘要In this paper, we use Fucik spectrum, ordinary differential equation theory of Banach spaces to study semilinear elliptic boundary value problems with jumping nonlinearities at zero or infinity, especially with resonance at infinity, and obtain new results on the existence of multiple solutions and sign-changing solutions with a weakening of the P.S. condition. In one case we get up to seven nontrivial solutions. The techniques have independent interest. (C) 2000 Academic Press.
关键词Fucik spectrum critical points sign-changing solutions Dirichlet problems multiple solutions jumping nonlinearities
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000089976400005
出版者ACADEMIC PRESS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/14988
专题中国科学院数学与系统科学研究院
通讯作者Dancer, EN
作者单位1.Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
2.Acad Sinica, Math Inst, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Dancer, EN,Zhang, ZT. Fucik spectrum, sign-changing, and multiple solutions for semilinear elliptic boundary value problems with resonance at infinity[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2000,250(2):449-464.
APA Dancer, EN,&Zhang, ZT.(2000).Fucik spectrum, sign-changing, and multiple solutions for semilinear elliptic boundary value problems with resonance at infinity.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,250(2),449-464.
MLA Dancer, EN,et al."Fucik spectrum, sign-changing, and multiple solutions for semilinear elliptic boundary value problems with resonance at infinity".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 250.2(2000):449-464.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dancer, EN]的文章
[Zhang, ZT]的文章
百度学术
百度学术中相似的文章
[Dancer, EN]的文章
[Zhang, ZT]的文章
必应学术
必应学术中相似的文章
[Dancer, EN]的文章
[Zhang, ZT]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。