CSpace
A Kiefer-Wolfowitz algorithm with randomized differences
Chen, HF; Duncan, TE; Pasik-Duncan, B
1999-03-01
发表期刊IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN0018-9286
卷号44期号:3页码:442-453
摘要A Kiefer-Wolfowitz or simultaneous perturbation algorithm that uses either one-sided or two-sided randomized differences and truncations at randomly varying bounds is given in this paper. At each iteration of the algorithm only two observations are required in contrast to 2l observations, where l is the dimension, in the classical algorithm, The algorithm given here is shown to he convergent under only some mild conditions. A rate of convergence and an asymptotic normality of the algorithm are also established.
关键词Kiefer-Wolfowitz algorithm perturbation algorithm simultaneous stochastic approximation stochastic approximation with randomized differences
语种英语
WOS研究方向Automation & Control Systems ; Engineering
WOS类目Automation & Control Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000079081600003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/14460
专题中国科学院数学与系统科学研究院
通讯作者Chen, HF
作者单位1.Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
2.Univ Kansas, Dept Math, Lawrence, KS 66045 USA
推荐引用方式
GB/T 7714
Chen, HF,Duncan, TE,Pasik-Duncan, B. A Kiefer-Wolfowitz algorithm with randomized differences[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,1999,44(3):442-453.
APA Chen, HF,Duncan, TE,&Pasik-Duncan, B.(1999).A Kiefer-Wolfowitz algorithm with randomized differences.IEEE TRANSACTIONS ON AUTOMATIC CONTROL,44(3),442-453.
MLA Chen, HF,et al."A Kiefer-Wolfowitz algorithm with randomized differences".IEEE TRANSACTIONS ON AUTOMATIC CONTROL 44.3(1999):442-453.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, HF]的文章
[Duncan, TE]的文章
[Pasik-Duncan, B]的文章
百度学术
百度学术中相似的文章
[Chen, HF]的文章
[Duncan, TE]的文章
[Pasik-Duncan, B]的文章
必应学术
必应学术中相似的文章
[Chen, HF]的文章
[Duncan, TE]的文章
[Pasik-Duncan, B]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。