KMS Of Academy of mathematics and systems sciences, CAS
| Mean convergence of Hermite-Fejer interpolation based on the zeros of Lascenov polynomials | |
| Shi, YG | |
| 1996-03-01 | |
| 发表期刊 | CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES
![]() |
| ISSN | 0008-4395 |
| 卷号 | 39期号:1页码:117-128 |
| 摘要 | Weighted LP mean convergence of Hermite-Fejer interpolation based on the zeros of orthogonal polynomials with respect to the weight \x\(2 alpha+1)(1 - x(2))(beta) (alpha,beta > - 1) is investigated. A necessary and sufficient condition for such convergence for all continuous functions is given. Meanwhile divergence of Hermite-Fejer interpolation in L(p) with p > 2 is obtained. This gives a possible answer to Problem 17 of P. Turan [J. Approx. Theory, 29(1980), p. 40]. |
| 关键词 | Hermite-Fejer interpolation mean convergence orthogonal polynomials |
| 语种 | 英语 |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics |
| WOS记录号 | WOS:A1996UF60000016 |
| 出版者 | CANADIAN MATHEMATICAL SOC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/13191 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 作者单位 | CHINESE ACAD SCI, INST COMPUTAT MATH & SCI ENGN COMP, BEIJING 100080, PEOPLES R CHINA |
| 推荐引用方式 GB/T 7714 | Shi, YG. Mean convergence of Hermite-Fejer interpolation based on the zeros of Lascenov polynomials[J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES,1996,39(1):117-128. |
| APA | Shi, YG.(1996).Mean convergence of Hermite-Fejer interpolation based on the zeros of Lascenov polynomials.CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES,39(1),117-128. |
| MLA | Shi, YG."Mean convergence of Hermite-Fejer interpolation based on the zeros of Lascenov polynomials".CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES 39.1(1996):117-128. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Shi, YG]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Shi, YG]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Shi, YG]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论