Freeness and matrix decompositions | |
Ge Liming1,2![]() | |
2011-11-01 | |
发表期刊 | SCIENCE CHINA-MATHEMATICS
![]() |
ISSN | 1674-7283 |
卷号 | 54期号:11页码:2309-2327 |
摘要 | If a semicircular element and the diagonal subalgebra of a matrix algebra are free in a finite von Neumann algebra (with respect to a normal trace), then, up to the conjugation by a diagonal unitary element, all entries of the semicircular element are uniquely determined in the sense of (joint) distribution. Suppose a selfadjoint element is free with the diagonal subalgebra. Then, in the matrix decomposition of the selfadjoint element, any two entries cannot be free with each other unless the selfadjoint element is semicircular. We also define a "matricial distance" between two elements and show that such distance for two free semicircular elements in a finite von Neumann algebra is nonzero and independent of the properties of the von Neumann algebra. |
关键词 | von Neumann algebra factor semicircular element joint distribution |
DOI | 10.1007/s11425-011-4323-5 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000296637700004 |
出版者 | SCIENCE PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/12611 |
专题 | 数学所 |
通讯作者 | Shen Junhao |
作者单位 | 1.Univ New Hampshire, Dept Math, Durham, NH 03824 USA 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Ge Liming,Shen Junhao. Freeness and matrix decompositions[J]. SCIENCE CHINA-MATHEMATICS,2011,54(11):2309-2327. |
APA | Ge Liming,&Shen Junhao.(2011).Freeness and matrix decompositions.SCIENCE CHINA-MATHEMATICS,54(11),2309-2327. |
MLA | Ge Liming,et al."Freeness and matrix decompositions".SCIENCE CHINA-MATHEMATICS 54.11(2011):2309-2327. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ge Liming]的文章 |
[Shen Junhao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ge Liming]的文章 |
[Shen Junhao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ge Liming]的文章 |
[Shen Junhao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论