CSpace

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Global Controllability of the Navier-Stokes Equations in the Presence of Curved Boundary with No-Slip Conditions 期刊论文
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 卷号: 24, 期号: 3, 页码: 32
作者:  Liao, Jiajiang;  Sueur, Franck;  Zhang, Ping
收藏  |  浏览/下载:110/0  |  提交时间:2023/02/07
Axi-symmetric Navier-Stokes equations  Controllability  No-slip Dirichlet boundary condition  Boundary layers  Return method  Multi-scales asymptotic expansion  Well-prepared dissipation method  Long-time nonlinear Cauchy-Kovalevskaya estimates  

Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects

期刊论文

CHAOS SOLITONS & FRACTALS, 2022, 卷号: 155, 页码: 10
作者:  Raza, Ali;  Ghaffari, Abuzar;  Khan, Sami Ullah;  Ul Haq, Absar;  Khan, M. Ijaz;  Khan, M. Riaz
收藏  |  浏览/下载:146/0  |  提交时间:2022/06/21
AB-fractional derivative  MHD flow  Time fractional operator  Porous medium  Slip boundary  
The immersed boundary-lattice Boltzmann method for solving solid-fluid interaction problem with Navier-slip boundary condition 期刊论文
COMPUTERS & FLUIDS, 2021, 卷号: 217, 页码: 10
作者:  Wang, Zhenyu;  He, Qiaolin;  Huang, Jizu
收藏  |  浏览/下载:167/0  |  提交时间:2021/04/26
Solid-fluid interaction problem  Lattice Boltzmann equations  Navier-slip boundary condition  Immerse boundary method  
A non-steady system with friction boundary conditions for flow of heat-conducting incompressible viscous fluids 期刊论文
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 卷号: 484, 期号: 1, 页码: 42
作者:  Kim, Tujin;  Cao, Daomin
收藏  |  浏览/下载:238/0  |  提交时间:2020/05/24
Heat-conducting fluids  Dissipative heating  Mixed boundary conditions  Tresca slip  Leak boundary conditions  Pressure boundary condition  
A lattice Boltzmann model for multiphase flows with moving contact line and variable density 期刊论文
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 卷号: 353, 页码: 26-45
作者:  Huang, Jizu;  Wang, Xiao-Ping
收藏  |  浏览/下载:181/0  |  提交时间:2018/07/30
Lattice Boltzmann model  Variable density  Moving contact line  Slip boundary condition