KMS Of Academy of mathematics and systems sciences, CAS
Secondary Brown-Kervaire quadratic forms and pi-manifolds | |
Fang, FQ; Pan, JZ | |
2004 | |
发表期刊 | FORUM MATHEMATICUM
![]() |
ISSN | 0933-7741 |
卷号 | 16期号:4页码:459-481 |
摘要 | Given a Phi-oriented manifold (cf. Definition 1.1) M of dimension 2n, where n greater than or equal to 4 and n not equal 3 (mod 4), we prove that there is a quadratic function phi(M) : Hn-1 (M, Z(4)) --> Q/Z, called the secondary Brown-Kervaire quadratic forms, so that phi(M)(x + y) = phi(M)(x) + phi(M)(y) + j(x boolean OR Sq(2)y) [M], the Witt class of phi(M) is a homotopy invariant, if the Wu classes v(n+2-2i) (v(M)) = 0 for all integer i. where j : Z(2) --> Q/Z is the inclusion homomorphism and v(M) the stable normal bundle of M. As an application of our invariants we obtain a complete classification of (n - 2)-connected 2n-dimensional pi-manifolds (i.e. stable parallelizable manifolds) up to homeomorphism and homotopy equivalence when n greater than or equal to 4 and n + 2 not equal 2(i) for any integer i. In particular, it shows that homotopy equivalent (n - 2)-connected 2n-dimensional pi-manifolds are homeomorphic when n greater than or equal to 4 and n + 2 not equal 2(i) for any integer i. |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000220656400001 |
出版者 | WALTER DE GRUYTER & CO |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/936 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Fang, FQ |
作者单位 | 1.Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China 2.Univ Fed Fluminense, Inst Matemat, BR-24005 Niteroi, RJ, Brazil 3.Acad Sinica, Inst Math, Beijing 100080, Peoples R China 4.Korea Univ, Dept Math Educ, Seoul 136701, South Korea |
推荐引用方式 GB/T 7714 | Fang, FQ,Pan, JZ. Secondary Brown-Kervaire quadratic forms and pi-manifolds[J]. FORUM MATHEMATICUM,2004,16(4):459-481. |
APA | Fang, FQ,&Pan, JZ.(2004).Secondary Brown-Kervaire quadratic forms and pi-manifolds.FORUM MATHEMATICUM,16(4),459-481. |
MLA | Fang, FQ,et al."Secondary Brown-Kervaire quadratic forms and pi-manifolds".FORUM MATHEMATICUM 16.4(2004):459-481. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Fang, FQ]的文章 |
[Pan, JZ]的文章 |
百度学术 |
百度学术中相似的文章 |
[Fang, FQ]的文章 |
[Pan, JZ]的文章 |
必应学术 |
必应学术中相似的文章 |
[Fang, FQ]的文章 |
[Pan, JZ]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论