CSpace  > 应用数学研究所
Quasi-invariance of Lebesgue measure under the homeomorphic flow generated by SDE with non-Lipschitz coefficient
Luo, Dejun
2009-04-01
发表期刊BULLETIN DES SCIENCES MATHEMATIQUES
ISSN0007-4497
卷号133期号:3页码:205-228
摘要We consider the stochastic flow generated by Stratonovich stochastic differential equations with non-Lipschitz drift coefficients. Based on the author's previous works, we show that if the generalized divergence of the drift is bounded, then the Lebesgue measure on R(d) is quasi-invariant under the action of the stochastic flow, and the explicit expression of the Radon-Nikodym derivative is also presented. Finally we show in a special case that the unique solution of the corresponding Fokker-Planck equation is given by the density of the stochastic flow. (C) 2009 Elsevier Masson SAS. All rights reserved.
关键词Stochastic flow Stochastic differential equation Quasi-invariance of measure Non-Lipschitz condition Fokker-Planck equation
DOI10.1016/j.bulsci.2009.01.002
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000265475000001
出版者GAUTHIER-VILLARS/EDITIONS ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/8903
专题应用数学研究所
通讯作者Luo, Dejun
作者单位Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Luo, Dejun. Quasi-invariance of Lebesgue measure under the homeomorphic flow generated by SDE with non-Lipschitz coefficient[J]. BULLETIN DES SCIENCES MATHEMATIQUES,2009,133(3):205-228.
APA Luo, Dejun.(2009).Quasi-invariance of Lebesgue measure under the homeomorphic flow generated by SDE with non-Lipschitz coefficient.BULLETIN DES SCIENCES MATHEMATIQUES,133(3),205-228.
MLA Luo, Dejun."Quasi-invariance of Lebesgue measure under the homeomorphic flow generated by SDE with non-Lipschitz coefficient".BULLETIN DES SCIENCES MATHEMATIQUES 133.3(2009):205-228.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, Dejun]的文章
百度学术
百度学术中相似的文章
[Luo, Dejun]的文章
必应学术
必应学术中相似的文章
[Luo, Dejun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。