KMS Of Academy of mathematics and systems sciences, CAS
Multiple periodic solutions of ordinary differential equations with double resonance | |
Su, Jiabao2; Zhao, Leiga1 | |
2009-02-15 | |
发表期刊 | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
![]() |
ISSN | 0362-546X |
卷号 | 70期号:4页码:1520-1527 |
摘要 | In this paper we Study by Morse theory the existence of multiple periodic solutions of a class of ordinary differential equation with double resonance at infinity between two Consecutive eigenvalues and with resonance at origin. (C) 2008 Elsevier Ltd. All rights reserved. |
关键词 | Morse theory Periodic solution Resonance |
DOI | 10.1016/j.na.2008.02.031 |
语种 | 英语 |
资助项目 | NSFC ; NSFB[1082004] ; Doctoral Programme Foundation of NEM of China[20070028004] ; Key Project of BJJW[KZ200810028013] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000262888300005 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/8538 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zhao, Leiga |
作者单位 | 1.Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China |
推荐引用方式 GB/T 7714 | Su, Jiabao,Zhao, Leiga. Multiple periodic solutions of ordinary differential equations with double resonance[J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,2009,70(4):1520-1527. |
APA | Su, Jiabao,&Zhao, Leiga.(2009).Multiple periodic solutions of ordinary differential equations with double resonance.NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,70(4),1520-1527. |
MLA | Su, Jiabao,et al."Multiple periodic solutions of ordinary differential equations with double resonance".NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 70.4(2009):1520-1527. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Su, Jiabao]的文章 |
[Zhao, Leiga]的文章 |
百度学术 |
百度学术中相似的文章 |
[Su, Jiabao]的文章 |
[Zhao, Leiga]的文章 |
必应学术 |
必应学术中相似的文章 |
[Su, Jiabao]的文章 |
[Zhao, Leiga]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论