| TRANSLATING SOLITONS TO SYMPLECTIC AND LAGRANGIAN MEAN CURVATURE FLOWS | |
Han, Xiaoli1; Li, Jiayu2,3
| |
| 2009-04-01 | |
| 发表期刊 | INTERNATIONAL JOURNAL OF MATHEMATICS
![]() |
| ISSN | 0129-167X |
| 卷号 | 20期号:4页码:443-458 |
| 摘要 | In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study properties of symplectic translating solitons. We prove that, the Kahler angle a of a symplectic translating soliton with max vertical bar A vertical bar = 1 satisfies that sup vertical bar alpha vertical bar > pi/4 vertical bar T vertical bar/vertical bar T vertical bar+1 where T is the direction in which the surface translates. |
| 关键词 | Symplectic surface Lagrangian surface translating slotion mean curvature flow |
| 语种 | 英语 |
| 资助项目 | NSFC |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics |
| WOS记录号 | WOS:000265093900003 |
| 出版者 | WORLD SCIENTIFIC PUBL CO PTE LTD |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/8423 |
| 专题 | 数学所 |
| 通讯作者 | Han, Xiaoli |
| 作者单位 | 1.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China 2.Abdus Salam Int Ctr Theoret Phys, Math Grp, I-34100 Trieste, Italy 3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China |
| 推荐引用方式 GB/T 7714 | Han, Xiaoli,Li, Jiayu. TRANSLATING SOLITONS TO SYMPLECTIC AND LAGRANGIAN MEAN CURVATURE FLOWS[J]. INTERNATIONAL JOURNAL OF MATHEMATICS,2009,20(4):443-458. |
| APA | Han, Xiaoli,&Li, Jiayu.(2009).TRANSLATING SOLITONS TO SYMPLECTIC AND LAGRANGIAN MEAN CURVATURE FLOWS.INTERNATIONAL JOURNAL OF MATHEMATICS,20(4),443-458. |
| MLA | Han, Xiaoli,et al."TRANSLATING SOLITONS TO SYMPLECTIC AND LAGRANGIAN MEAN CURVATURE FLOWS".INTERNATIONAL JOURNAL OF MATHEMATICS 20.4(2009):443-458. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Han, Xiaoli]的文章 |
| [Li, Jiayu]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Han, Xiaoli]的文章 |
| [Li, Jiayu]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Han, Xiaoli]的文章 |
| [Li, Jiayu]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论