KMS Of Academy of mathematics and systems sciences, CAS
Anisotropic conforming rectangular elements for elliptic problems of any order | |
Chen, Shaochun2; Yang, Yongqin2; Mao, Shipeng1![]() | |
2009-05-01 | |
发表期刊 | APPLIED NUMERICAL MATHEMATICS
![]() |
ISSN | 0168-9274 |
卷号 | 59期号:5页码:1137-1148 |
摘要 | In this paper two sets of C(N-1) conforming rectangular elements for linear elliptic problems of order 2N, N >= 1, are presented. One is b(i) - (2N - 1) element, well known b(i)-linear element and b(i)-cubic C(1) element (Bogner-Fox-Schmit) correspond to N = 1 and N = 2, respectively. Another one is b(i) - 2N element, well known b(i)-quadratic element corresponds to N = 1. The anisotropic error estimates are proved by the Newton's formulas for Hermite interpolation in two dimension and the special properties of the divided differences with coincident knots presented in this paper. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved. |
关键词 | Anisotropic Hermite interpolation Divided difference with coincident knots Elliptic problem of any order |
DOI | 10.1016/j.apnum.2008.05.004 |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000264925900019 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/7460 |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Mao, Shipeng |
作者单位 | 1.Chinese Acad Sci, Inst Computat Math Acad Math & Syst Sci, Beijing 100080, Peoples R China 2.Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Shaochun,Yang, Yongqin,Mao, Shipeng. Anisotropic conforming rectangular elements for elliptic problems of any order[J]. APPLIED NUMERICAL MATHEMATICS,2009,59(5):1137-1148. |
APA | Chen, Shaochun,Yang, Yongqin,&Mao, Shipeng.(2009).Anisotropic conforming rectangular elements for elliptic problems of any order.APPLIED NUMERICAL MATHEMATICS,59(5),1137-1148. |
MLA | Chen, Shaochun,et al."Anisotropic conforming rectangular elements for elliptic problems of any order".APPLIED NUMERICAL MATHEMATICS 59.5(2009):1137-1148. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论