Multiple Solutions for Asymptotically Linear Elliptic Systems | |
Zhao, Fukun1,2; Zhao, Leiga2; Ding, Yanheng2![]() | |
2008-12-01 | |
发表期刊 | NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS
![]() |
ISSN | 1021-9722 |
卷号 | 15期号:6页码:673-688 |
摘要 | This paper is concerned with the following periodic Hamiltonian elliptic system {-Delta u + V(x)u = g(x,v) in R-N, -Delta v + V(x)v = f(x,u) in R-N, u(x) -> 0 and v(x) -> 0 as vertical bar x vertical bar -> infinity, where the potential V is periodic and has a positive bound from below, f(x, t) and g( x, t) are periodic in x, asymptotically linear in t as vertical bar t vertical bar -> infinity. By using critical point theory of strongly indefinite functionals, existence of a positive ground state solution as well as infinitely many geometrically distinct solutions for odd f and g are obtained. |
关键词 | Hamiltonian elliptic system variational method strongly indefinite functional |
DOI | 10.1007/s00030-008-7080-6 |
语种 | 英语 |
资助项目 | NSFC[10561011] ; NSFC[10671195] ; Foundation of Education Commission of Yunnan Province, China |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000261985800002 |
出版者 | SPRINGER BASEL AG |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/6443 |
专题 | 数学所 |
通讯作者 | Zhao, Fukun |
作者单位 | 1.Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China 2.Chinese Acad Sci, AMSS, Inst Math, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Fukun,Zhao, Leiga,Ding, Yanheng. Multiple Solutions for Asymptotically Linear Elliptic Systems[J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS,2008,15(6):673-688. |
APA | Zhao, Fukun,Zhao, Leiga,&Ding, Yanheng.(2008).Multiple Solutions for Asymptotically Linear Elliptic Systems.NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS,15(6),673-688. |
MLA | Zhao, Fukun,et al."Multiple Solutions for Asymptotically Linear Elliptic Systems".NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS 15.6(2008):673-688. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论