CSpace
Large-stepsize integrators for charged-particle dynamics over multiple time scales
Hairer, Ernst1; Lubich, Christian2; Shi, Yanyan2,3,4
2022-06-08
发表期刊NUMERISCHE MATHEMATIK
ISSN0029-599X
页码33
摘要The Boris algorithm, a closely related variational integrator and a newly proposed filtered variational integrator are studied when they are used to numerically integrate the equations of motion of a charged particle in a mildly non-uniform strong magnetic field, taking step sizes that are much larger than the period of the Larmor rotations. For the Boris algorithm and the standard (unfiltered) variational integrator, satisfactory behaviour is only obtained when the component of the initial velocity orthogonal to the magnetic field is filtered out. The particle motion shows varying behaviour over multiple time scales: fast gyrorotation, guiding centre motion, slow perpendicular drift, near-conservation of the magnetic moment over very long times and conservation of energy for all times. Using modulated Fourier expansions of the exact and numerical solutions, it is analysed to which extent this behaviour is reproduced by the three numerical integrators used with large step sizes that do not resolve the fast gyrorotations.
关键词Charged particle Strong magnetic field Boris algorithm Variational integrator Filtered variational integrator Modulated Fourier expansion Long-term behaviour
DOI10.1007/s00211-022-01298-9
收录类别SCI
语种英语
资助项目Swiss National Science Foundation[200020_192129] ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)[258734477 - SFB 1173] ; University of the Chinese Academy of Sciences (UCAS)
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000807944200001
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/61488
专题中国科学院数学与系统科学研究院
通讯作者Lubich, Christian
作者单位1.Univ Geneva, Dept Math, CH-1211 Geneva 24, Switzerland
2.Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
3.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Hairer, Ernst,Lubich, Christian,Shi, Yanyan. Large-stepsize integrators for charged-particle dynamics over multiple time scales[J]. NUMERISCHE MATHEMATIK,2022:33.
APA Hairer, Ernst,Lubich, Christian,&Shi, Yanyan.(2022).Large-stepsize integrators for charged-particle dynamics over multiple time scales.NUMERISCHE MATHEMATIK,33.
MLA Hairer, Ernst,et al."Large-stepsize integrators for charged-particle dynamics over multiple time scales".NUMERISCHE MATHEMATIK (2022):33.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hairer, Ernst]的文章
[Lubich, Christian]的文章
[Shi, Yanyan]的文章
百度学术
百度学术中相似的文章
[Hairer, Ernst]的文章
[Lubich, Christian]的文章
[Shi, Yanyan]的文章
必应学术
必应学术中相似的文章
[Hairer, Ernst]的文章
[Lubich, Christian]的文章
[Shi, Yanyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。