CSpace
Curvature conditions for spatial isotropy
Tzanavaris, Kostas1; Seoane, Pau Amaro2,3,4,5
2022-08-01
发表期刊JOURNAL OF GEOMETRY AND PHYSICS
ISSN0393-0440
卷号178页码:14
摘要In the context of mathematical cosmology, the study of necessary and sufficient conditions for a semi-Riemannian manifold to be a (generalized) Robertson-Walker space-time is important. In particular, it is a requirement for the development of initial data to reproduce or approximate the standard cosmological model. Usually these conditions involve the Einstein field equations, which change if one considers alternative theories of gravity or if the coupling matter fields change. Therefore, the derivation of conditions which do not depend on the field equations is an advantage. In this work we present a geometric derivation of such a condition. We require the existence of a unit vector field to distinguish at each point of space two (non-equal) sectional curvatures. This is equivalent for the Riemann tensor to adopt a specific form. Our geometrical approach yields a local isometry between the space and a Robertson-Walker space of the same dimension, curvature and metric tensor sign (the dimension of the largest subspace on which the metric tensor is negative definite). Remarkably, if the space is simply-connected, the isometry is global. Our result generalizes to a class of spaces of non-constant curvature the theorem that spaces of the same constant curvature, dimension and metric tensor sign must be locally isometric. Because we do not make any assumptions regarding field equations, matter fields or metric tensor sign, one can readily use this result to study cosmological models within alternative theories of gravity or with different matter fields. (C) 2022 Elsevier B.V. All rights reserved.
关键词General relativity Differential geometry Riemannian geometry
DOI10.1016/j.geomphys.2022.104557
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2016YFA0400702] ; National Science Foun-dation of China[11721303] ; National Science Foun-dation of China[11873022] ; National Science Foun-dation of China[11991053]
WOS研究方向Mathematics ; Physics
WOS类目Mathematics, Applied ; Mathematics ; Physics, Mathematical
WOS记录号WOS:000806873000003
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/61245
专题中国科学院数学与系统科学研究院
通讯作者Seoane, Pau Amaro
作者单位1.Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh, Scotland
2.Univ Politecn Valencia, Inst Multidisciplinary Math, Valencia, Spain
3.Max Planck Inst Extraterr Phys, Munich, Germany
4.Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing, Peoples R China
5.Kavli Inst Astron & Astrophys, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tzanavaris, Kostas,Seoane, Pau Amaro. Curvature conditions for spatial isotropy[J]. JOURNAL OF GEOMETRY AND PHYSICS,2022,178:14.
APA Tzanavaris, Kostas,&Seoane, Pau Amaro.(2022).Curvature conditions for spatial isotropy.JOURNAL OF GEOMETRY AND PHYSICS,178,14.
MLA Tzanavaris, Kostas,et al."Curvature conditions for spatial isotropy".JOURNAL OF GEOMETRY AND PHYSICS 178(2022):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tzanavaris, Kostas]的文章
[Seoane, Pau Amaro]的文章
百度学术
百度学术中相似的文章
[Tzanavaris, Kostas]的文章
[Seoane, Pau Amaro]的文章
必应学术
必应学术中相似的文章
[Tzanavaris, Kostas]的文章
[Seoane, Pau Amaro]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。