CSpace
On the monomer-dimer problem of some graphs
Yan, Weigen; Yeh, Yeong-Nan
2008-05-01
发表期刊STUDIES IN APPLIED MATHEMATICS
ISSN0022-2526
卷号120期号:4页码:351-360
摘要The pure-dimer problem was solved in exact closed form for many lattice graphs. Although some numerical solutions of the monomer-dimer problem were obtained, no exact solutions of the monomer-dimer problem were available (except in one dimension). Let G be an arbitrary graph with N vertices. Construct a new graph R(G) from G by adding a new verex e* corresponding to each edge e = (a, b) of G and by joining each new vertex e* to the vertices a and b. If the suitable activities of vertices and edges in R(G) are selected, then the monomer-dimer problem can be solved exactly for the graph R(G), which generalizes the result obtained by Yan and Yeh. As applications, if we select suitable activities for the vertices and edges of R((L) over tilde (n,d)), we obtain the exact formulae for the MD partition function, MD free energy, and MD entropy of R((L) over tilde (n,d)) for the d-dimensional lattice (L) over tilde (n,d)) with periodic boundaries.
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000255517600002
出版者WILEY-BLACKWELL
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/6119
专题中国科学院数学与系统科学研究院
通讯作者Yan, Weigen
作者单位Jimei Univ, Sch Sci, Inst Math, Acad Sinica, Xiamen 361021, Peoples R China
推荐引用方式
GB/T 7714
Yan, Weigen,Yeh, Yeong-Nan. On the monomer-dimer problem of some graphs[J]. STUDIES IN APPLIED MATHEMATICS,2008,120(4):351-360.
APA Yan, Weigen,&Yeh, Yeong-Nan.(2008).On the monomer-dimer problem of some graphs.STUDIES IN APPLIED MATHEMATICS,120(4),351-360.
MLA Yan, Weigen,et al."On the monomer-dimer problem of some graphs".STUDIES IN APPLIED MATHEMATICS 120.4(2008):351-360.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yan, Weigen]的文章
[Yeh, Yeong-Nan]的文章
百度学术
百度学术中相似的文章
[Yan, Weigen]的文章
[Yeh, Yeong-Nan]的文章
必应学术
必应学术中相似的文章
[Yan, Weigen]的文章
[Yeh, Yeong-Nan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。