CSpace
What makes for uniformity for non-contrastive self-supervised learning?
Wang YinQuan1,2; Zhang XiaoPeng3; Tian Qi3; Lu JinHu4
2022-09-16
发表期刊SCIENCE CHINA-TECHNOLOGICAL SCIENCES
ISSN1674-7321
页码10
摘要Recent advances in self-supervised learning (SSL) have made remarkable progress, especially for contrastive methods that target pulling two augmented views of one image together and pushing the views of all other images away. In this setting, negative pairs play a key role in avoiding collapsed representation. Recent studies, such as those on bootstrap your own latent (BYOL) and SimSiam, have surprisingly achieved a comparable performance even without contrasting negative samples. However, a basic theoretical issue for SSL arises: how can different SSL methods avoid collapsed representation, and is there a common design principle? In this study, we look deep into current non-contrastive SSL methods and analyze the key factors that avoid collapses. To achieve this goal, we present a new indicator of uniformity metric and study the local dynamics of the indicator to diagnose collapses in different scenarios. Moreover, we present some principles for choosing a good predictor, such that we can explicitly control the optimization process. Our theoretical analysis result is validated on some widely used benchmarks spanning different-scale datasets. We also compare recent SSL methods and analyze their commonalities in avoiding collapses and some ideas for future algorithm designs.
关键词contrastive learning self-supervised learning representation uniformity dynamics
DOI10.1007/s11431-021-2041-7
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61621003]
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Multidisciplinary ; Materials Science, Multidisciplinary
WOS记录号WOS:000855997800001
出版者SCIENCE PRESS
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/61029
专题中国科学院数学与系统科学研究院
通讯作者Zhang XiaoPeng
作者单位1.Acad Math & Syst Sci, Chinese Acad Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.Huawei Inc, Shenzhen 518128, Peoples R China
4.Beihang Univ, Sch Automat Sci & Elect Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Wang YinQuan,Zhang XiaoPeng,Tian Qi,et al. What makes for uniformity for non-contrastive self-supervised learning?[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2022:10.
APA Wang YinQuan,Zhang XiaoPeng,Tian Qi,&Lu JinHu.(2022).What makes for uniformity for non-contrastive self-supervised learning?.SCIENCE CHINA-TECHNOLOGICAL SCIENCES,10.
MLA Wang YinQuan,et al."What makes for uniformity for non-contrastive self-supervised learning?".SCIENCE CHINA-TECHNOLOGICAL SCIENCES (2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang YinQuan]的文章
[Zhang XiaoPeng]的文章
[Tian Qi]的文章
百度学术
百度学术中相似的文章
[Wang YinQuan]的文章
[Zhang XiaoPeng]的文章
[Tian Qi]的文章
必应学术
必应学术中相似的文章
[Wang YinQuan]的文章
[Zhang XiaoPeng]的文章
[Tian Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。