CSpace
DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows
Zhang, Rui1; Hu, Peiyan1; Meng, Qi2,4; Wang, Yue2; Zhu, Rongchan3; Chen, Bingguang1; Ma, Zhi-Ming1; Liu, Tie-Yan2
2022-10-01
发表期刊PHYSICS OF FLUIDS
ISSN1070-6631
卷号34期号:10页码:21
摘要We present the deep random vortex network (DRVN), a novel physics-informed framework for simulating and inferring the fluid dynamics governed by the incompressible Navier-Stokes equations. Unlike the existing physics-informed neural network (PINN), which embeds physical and geometry information through the residual of equations and boundary data, DRVN automatically embeds this information into neural networks through neural random vortex dynamics equivalent to the Navier-Stokes equation. Specifically, the neural random vortex dynamics motivates a Monte Carlo-based loss function for training neural networks, which avoids the calculation of derivatives through auto-differentiation. Therefore, DRVN can efficiently solve Navier-Stokes equations with non-differentiable initial conditions and fractional operators. Furthermore, DRVN naturally embeds the boundary conditions into the kernel function of the neural random vortex dynamics and, thus, does not need additional data to obtain boundary information. We conduct experiments on forward and inverse problems with incompressible Navier-Stokes equations. The proposed method achieves accurate results when simulating and when inferring Navier-Stokes equations. For situations that include singular initial conditions and agnostic boundary data, DRVN significantly outperforms the existing PINN method. Furthermore, compared with the conventional adjoint method when solving inverse problems, DRVN achieves a 2 orders of magnitude improvement for the training time with significantly precise estimates. Published under an exclusive license by AIP Publishing.
DOI10.1063/5.0110342
收录类别SCI
语种英语
资助项目Microsoft Research AI4Science
WOS研究方向Mechanics ; Physics
WOS类目Mechanics ; Physics, Fluids & Plasmas
WOS记录号WOS:000876715800007
出版者AIP Publishing
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60723
专题中国科学院数学与系统科学研究院
通讯作者Zhang, Rui; Hu, Peiyan
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
2.Microsoft Res AI4Sci, Beijing, Peoples R China
3.Bielefeld Univ Math, Bielefeld, Germany
4.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Rui,Hu, Peiyan,Meng, Qi,et al. DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows[J]. PHYSICS OF FLUIDS,2022,34(10):21.
APA Zhang, Rui.,Hu, Peiyan.,Meng, Qi.,Wang, Yue.,Zhu, Rongchan.,...&Liu, Tie-Yan.(2022).DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows.PHYSICS OF FLUIDS,34(10),21.
MLA Zhang, Rui,et al."DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows".PHYSICS OF FLUIDS 34.10(2022):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Rui]的文章
[Hu, Peiyan]的文章
[Meng, Qi]的文章
百度学术
百度学术中相似的文章
[Zhang, Rui]的文章
[Hu, Peiyan]的文章
[Meng, Qi]的文章
必应学术
必应学术中相似的文章
[Zhang, Rui]的文章
[Hu, Peiyan]的文章
[Meng, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。