KMS Of Academy of mathematics and systems sciences, CAS
| Distributed stochastic gradient tracking methods with momentum acceleration for non-convex optimization | |
| Gao, Juan1; Liu, Xin-Wei2; Dai, Yu-Hong3,4; Huang, Yakui2; Gu, Junhua1 | |
| 2022-11-23 | |
| 发表期刊 | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
![]() |
| ISSN | 0926-6003 |
| 页码 | 42 |
| 摘要 | We consider a distributed non-convex optimization problem of minimizing the sum of all local cost functions over a network of agents. This problem often appears in large-scale distributed machine learning, known as non-convex empirical risk minimization. In this paper, we propose two accelerated algorithms, named DSGT-HB and DSGT-NAG, which combine the distributed stochastic gradient tracking (DSGT) method with momentum accelerated techniques. Under appropriate assumptions, we prove that both algorithms sublinearly converge to a neighborhood of a first-order stationary point of the distributed non-convex optimization. Moreover, we derive the conditions under which DSGT-HB and DSGT-NAG achieve a network-independent linear speedup. Numerical experiments for a distributed non-convex logistic regression problem on real data sets and a deep neural network on the MNIST database show the superiorities of DSGT-HB and DSGT-NAG compared with DSGT. |
| 关键词 | Distributed non-convex optimization Machine learning Momentum methods Optimization algorithms Convergence rate |
| DOI | 10.1007/s10589-022-00432-5 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[12071108] ; National Natural Science Foundation of China[11671116] ; National Natural Science Foundation of China[12021001] ; National Natural Science Foundation of China[11991021] ; National Natural Science Foundation of China[11991020] ; National Natural Science Foundation of China[11971372] ; National Natural Science Foundation of China[11701137] ; Strategic Priority Research Program of CAS[XDA27000000] |
| WOS研究方向 | Operations Research & Management Science ; Mathematics |
| WOS类目 | Operations Research & Management Science ; Mathematics, Applied |
| WOS记录号 | WOS:000886800900001 |
| 出版者 | SPRINGER |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/60593 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Liu, Xin-Wei |
| 作者单位 | 1.Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China 2.Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
| 推荐引用方式 GB/T 7714 | Gao, Juan,Liu, Xin-Wei,Dai, Yu-Hong,et al. Distributed stochastic gradient tracking methods with momentum acceleration for non-convex optimization[J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS,2022:42. |
| APA | Gao, Juan,Liu, Xin-Wei,Dai, Yu-Hong,Huang, Yakui,&Gu, Junhua.(2022).Distributed stochastic gradient tracking methods with momentum acceleration for non-convex optimization.COMPUTATIONAL OPTIMIZATION AND APPLICATIONS,42. |
| MLA | Gao, Juan,et al."Distributed stochastic gradient tracking methods with momentum acceleration for non-convex optimization".COMPUTATIONAL OPTIMIZATION AND APPLICATIONS (2022):42. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论