CSpace
Ensemble wavelet-learning approach for predicting the effective mechanical properties of concrete composite materials
Linghu, Jiale1; Dong, Hao1; Cui, Junzhi2
2022-04-18
发表期刊COMPUTATIONAL MECHANICS
ISSN0178-7675
页码31
摘要This paper proposes a high-accuracy and efficient ensemble wavelet-neural network method to predict the equivalent mechanical parameters of concrete composites. The doubly random uncertainties in structural heterogeneities and mechanical properties of concrete composites result in a challenging task to handle high-dimensional data properties, highly-complex mappings and huge computational cost for the repeated prediction of their mechanical parameters. The significant characteristics of this study are: (i) The random uncertainties both of structural heterogeneities and mechanical properties of concrete composites are modeled based on authors' previous work and Weibull probabilistic model, respectively. (ii) Asymptotic homogenization method (AHM) and the proposed background mesh technique are introduced to thoroughly extract the doubly random geometric and material characteristics of concrete composites for establishing concrete material databases. (iii) The wavelet transform is used to preprocess the high-dimensional data features of the material database, and the wavelet coefficients are used as the new input neurons of the artificial neural network (ANN) to establish the ensemble wavelet-neural network model. It should be noted that the wavelet-based learning strategy can not only extract important data features and resist noise from material database, but also achieve a great reduction in input data of neural networks from the entire material database and ensuring the successful training the neural networks. Finally, numerical experiments indicate that the proposed ensemble approach is a robust method for the high-accuracy and efficient prediction of equivalent mechanical properties of concrete composites.
关键词Concrete composite materials Weibull distribution Equivalent mechanical parameters Artificial neural networks Wavelet transform
DOI10.1007/s00466-022-02170-1
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51739007] ; National Natural Science Foundation of China[61971328] ; National Natural Science Foundation of China[12001414] ; Fundamental Research Funds for the Central Universities[JB210702] ; open foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics (Wuhan University of Technology)[WUT-TAM202104] ; Key Technology Research of FRP-Concrete Composite Structure ; Center for high performance computing of Xidian University
WOS研究方向Mathematics ; Mechanics
WOS类目Mathematics, Interdisciplinary Applications ; Mechanics
WOS记录号WOS:000784384400001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/60302
专题中国科学院数学与系统科学研究院
通讯作者Dong, Hao
作者单位1.Xidian Univ, Sch Math & Stat, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, 55 East Zhongguancun Rd, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Linghu, Jiale,Dong, Hao,Cui, Junzhi. Ensemble wavelet-learning approach for predicting the effective mechanical properties of concrete composite materials[J]. COMPUTATIONAL MECHANICS,2022:31.
APA Linghu, Jiale,Dong, Hao,&Cui, Junzhi.(2022).Ensemble wavelet-learning approach for predicting the effective mechanical properties of concrete composite materials.COMPUTATIONAL MECHANICS,31.
MLA Linghu, Jiale,et al."Ensemble wavelet-learning approach for predicting the effective mechanical properties of concrete composite materials".COMPUTATIONAL MECHANICS (2022):31.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Linghu, Jiale]的文章
[Dong, Hao]的文章
[Cui, Junzhi]的文章
百度学术
百度学术中相似的文章
[Linghu, Jiale]的文章
[Dong, Hao]的文章
[Cui, Junzhi]的文章
必应学术
必应学术中相似的文章
[Linghu, Jiale]的文章
[Dong, Hao]的文章
[Cui, Junzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。