KMS Of Academy of mathematics and systems sciences, CAS
Concavity of minimal L-2 integrals related to multiplier ideal sheaves on weakly pseudoconvex Kahler manifolds | |
Guan, Qi'an1; Mi, Zhitong1,2 | |
2022-02-23 | |
Source Publication | SCIENCE CHINA-MATHEMATICS
![]() |
ISSN | 1674-7283 |
Pages | 46 |
Abstract | In this paper, we present the concavity of the minimal L-2 integrals related to multiplier ideal sheaves on the weakly pseudoconvex Kahler manifolds which implies the sharp effectiveness results of the strong openness conjecture and a conjecture posed by Demailly and Kollar (2001) on weakly pseudoconvex Kahler manifolds. We obtain the relation between the concavity and the L-2 extension theorem. |
Keyword | multiplier ideal sheaf plurisubharmonic function weakly pseudoconvex Kahler manifold sublevel set |
DOI | 10.1007/s11425-021-1930-2 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[11825101] ; National Natural Science Foundation of China[11522101] ; National Natural Science Foundation of China[11431013] |
WOS Research Area | Mathematics |
WOS Subject | Mathematics, Applied ; Mathematics |
WOS ID | WOS:000763245100001 |
Publisher | SCIENCE PRESS |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.amss.ac.cn/handle/2S8OKBNM/60018 |
Collection | 中国科学院数学与系统科学研究院 |
Corresponding Author | Guan, Qi'an |
Affiliation | 1.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China |
Recommended Citation GB/T 7714 | Guan, Qi'an,Mi, Zhitong. Concavity of minimal L-2 integrals related to multiplier ideal sheaves on weakly pseudoconvex Kahler manifolds[J]. SCIENCE CHINA-MATHEMATICS,2022:46. |
APA | Guan, Qi'an,&Mi, Zhitong.(2022).Concavity of minimal L-2 integrals related to multiplier ideal sheaves on weakly pseudoconvex Kahler manifolds.SCIENCE CHINA-MATHEMATICS,46. |
MLA | Guan, Qi'an,et al."Concavity of minimal L-2 integrals related to multiplier ideal sheaves on weakly pseudoconvex Kahler manifolds".SCIENCE CHINA-MATHEMATICS (2022):46. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment