KMS Of Academy of mathematics and systems sciences, CAS
| Vanishing viscosity limit of the compressible Navier-Stokes equations with finite energy and total mass | |
He, Lin1,2; Wang, Yong2,3
| |
| 2022-02-15 | |
| 发表期刊 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
| ISSN | 0022-0396 |
| 卷号 | 310页码:327-361 |
| 摘要 | Assume the initial data of compressible Euler equations has finite energy and total mass. We can construct a sequence of solutions of one-dimensional compressible Navier-Stokes equations (density-dependent viscosity) with stress-free boundary conditions, so that, up to a subsequence, the sequence of solutions of compressible Navier-Stokes equations converges to a finite-energy weak solution of compressible Euler equations. Hence the inviscid limit of the compressible Navier-Stokes is justified. It is worth pointing out that our result covers the interesting case of the Saint-Venant model for shallow water (i.e., alpha = 1, gamma = 2). (c) 2021 Elsevier Inc. All rights reserved. |
| 关键词 | Euler equations Navier-Stokes equations Vanishing viscosity Compensated compactness framework Free boundary Density-dependent viscosity |
| DOI | 10.1016/j.jde.2021.11.015 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[12001388] ; Fundamental Research Funds for the Central Universities[YJ201962] ; Sichuan Youth Science and Technology Foundation[2021JDTD0024] ; Sichuan Youth Science and Technology Foundation[11771429] ; Sichuan Youth Science and Technology Foundation[11671237] ; Sichuan Youth Science and Technology Foundation[12022114] ; Sichuan Youth Science and Technology Foundation[11688101] ; Youth Innovation Promotion Association of Chinese Academy of Sciences[2019002] |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics |
| WOS记录号 | WOS:000754812400010 |
| 出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/60003 |
| 专题 | 应用数学研究所 |
| 通讯作者 | Wang, Yong |
| 作者单位 | 1.Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
| 推荐引用方式 GB/T 7714 | He, Lin,Wang, Yong. Vanishing viscosity limit of the compressible Navier-Stokes equations with finite energy and total mass[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2022,310:327-361. |
| APA | He, Lin,&Wang, Yong.(2022).Vanishing viscosity limit of the compressible Navier-Stokes equations with finite energy and total mass.JOURNAL OF DIFFERENTIAL EQUATIONS,310,327-361. |
| MLA | He, Lin,et al."Vanishing viscosity limit of the compressible Navier-Stokes equations with finite energy and total mass".JOURNAL OF DIFFERENTIAL EQUATIONS 310(2022):327-361. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [He, Lin]的文章 |
| [Wang, Yong]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [He, Lin]的文章 |
| [Wang, Yong]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [He, Lin]的文章 |
| [Wang, Yong]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论