CSpace
Clustering Hidden Markov Models With Variational Bayesian Hierarchical EM
Lan, Hui1,2; Liu, Ziquan2; Hsiao, Janet H.3; Yu, Dan4; Chan, Antoni B.2
2021-08-30
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码15
摘要The hidden Markov model (HMM) is a broadly applied generative model for representing time-series data, and clustering HMMs attract increased interest from machine learning researchers. However, the number of clusters (K) and the number of hidden states (S) for cluster centers are still difficult to determine. In this article, we propose a novel HMM-based clustering algorithm, the variational Bayesian hierarchical EM algorithm, which clusters HMMs through their densities and priors and simultaneously learns posteriors for the novel HMM cluster centers that compactly represent the structure of each cluster. The numbers K and S are automatically determined in two ways. First, we place a prior on the pair (K,S) and approximate their posterior probabilities, from which the values with the maximum posterior are selected. Second, some clusters and states are pruned out implicitly when no data samples are assigned to them, thereby leading to automatic selection of the model complexity. Experiments on synthetic and real data demonstrate that our algorithm performs better than using model selection techniques with maximum likelihood estimation.
关键词Hidden Markov models Bayes methods Data models Computational modeling Mixture models Clustering algorithms Analytical models Clustering hidden Markov mixture model (H3M) hierarchical EM variational Bayesian (VB)
DOI10.1109/TNNLS.2021.3105570
收录类别SCI
语种英语
资助项目Research Grants Council of the Hong Kong Special Administrative Region, China[GRF 17609117] ; City University of Hong Kong[7005218]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000733160200001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/59731
专题中国科学院数学与系统科学研究院
通讯作者Lan, Hui
作者单位1.Beijing Univ Technol, Sch Stat & Data Sci, Fac Sci, Beijing 100124, Peoples R China
2.City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
3.Univ Hong Kong, Dept Psychol, Hong Kong, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Lan, Hui,Liu, Ziquan,Hsiao, Janet H.,et al. Clustering Hidden Markov Models With Variational Bayesian Hierarchical EM[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2021:15.
APA Lan, Hui,Liu, Ziquan,Hsiao, Janet H.,Yu, Dan,&Chan, Antoni B..(2021).Clustering Hidden Markov Models With Variational Bayesian Hierarchical EM.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,15.
MLA Lan, Hui,et al."Clustering Hidden Markov Models With Variational Bayesian Hierarchical EM".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2021):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lan, Hui]的文章
[Liu, Ziquan]的文章
[Hsiao, Janet H.]的文章
百度学术
百度学术中相似的文章
[Lan, Hui]的文章
[Liu, Ziquan]的文章
[Hsiao, Janet H.]的文章
必应学术
必应学术中相似的文章
[Lan, Hui]的文章
[Liu, Ziquan]的文章
[Hsiao, Janet H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。