CSpace  > 应用数学研究所
A Minimax Probability Machine for Nondecomposable Performance Measures
Luo, Junru1,2; Qiao, Hong3,4; Zhang, Bo5,6,7
2021-09-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码13
摘要Imbalanced classification tasks are widespread in many real-world applications. For such classification tasks, in comparison with the accuracy rate (AR), it is usually much more appropriate to use nondecomposable performance measures such as the area under the receiver operating characteristic curve (AUC) and the $F_beta$ measure as the classification criterion since the label class is imbalanced. On the other hand, the minimax probability machine is a popular method for binary classification problems and aims at learning a linear classifier by maximizing the AR, which makes it unsuitable to deal with imbalanced classification tasks. The purpose of this article is to develop a new minimax probability machine for the $F_beta$ measure, called minimax probability machine for the $F_beta$ -measures (MPMF), which can be used to deal with imbalanced classification tasks. A brief discussion is also given on how to extend the MPMF model for several other nondecomposable performance measures listed in the article. To solve the MPMF model effectively, we derive its equivalent form which can then be solved by an alternating descent method to learn a linear classifier. Further, the kernel trick is employed to derive a nonlinear MPMF model to learn a nonlinear classifier. Several experiments on real-world benchmark datasets demonstrate the effectiveness of our new model.
关键词Measurement Task analysis Covariance matrices Support vector machines Prediction algorithms Minimization Kernel Imbalanced classification minimax probability machine nondecomposable performance measures
DOI10.1109/TNNLS.2021.3106484
收录类别SCI
语种英语
资助项目NNSF of China[91948303] ; NNSF of China[61627808]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000732226800001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/59728
专题应用数学研究所
通讯作者Zhang, Bo
作者单位1.Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213100, Jiangsu, Peoples R China
2.Changzhou Univ, Aliyun Sch Big Data, Changzhou 213100, Jiangsu, Peoples R China
3.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
5.Chinese Acad Sci, LSEC, Beijing 100190, Peoples R China
6.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
7.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Luo, Junru,Qiao, Hong,Zhang, Bo. A Minimax Probability Machine for Nondecomposable Performance Measures[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2021:13.
APA Luo, Junru,Qiao, Hong,&Zhang, Bo.(2021).A Minimax Probability Machine for Nondecomposable Performance Measures.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,13.
MLA Luo, Junru,et al."A Minimax Probability Machine for Nondecomposable Performance Measures".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2021):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, Junru]的文章
[Qiao, Hong]的文章
[Zhang, Bo]的文章
百度学术
百度学术中相似的文章
[Luo, Junru]的文章
[Qiao, Hong]的文章
[Zhang, Bo]的文章
必应学术
必应学术中相似的文章
[Luo, Junru]的文章
[Qiao, Hong]的文章
[Zhang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。