CSpace
Artificial bee colony-based combination approach to forecasting agricultural commodity prices
Wang, Jue; Wang, Zhen1; Li, Xiang; Zhou, Hao
2022
发表期刊INTERNATIONAL JOURNAL OF FORECASTING
ISSN0169-2070
卷号38期号:1页码:21-34
摘要The fluctuation of agricultural commodity prices has attracted a considerable amount of attention. However, the complexity of the agricultural futures market and the variability of influencing factors makes the prediction of agricultural commodity futures prices difficult. We address the nonlinear characteristics of agricultural commodity futures price series by proposing a forecast combination approach based on a global optimization method, called the Artificial Bee Colony Algorithm (ABC), for forecasting soybean and corn futures prices. Firstly, we used three denoising techniques, namely singular spectral analysis (SSA), empirical mode decomposition (EMD), and variational mode decomposition (VMD), to filter the external noise in the original price series. Then, we generated diverse forecasting sub-models by combining denoising techniques and five popular forecasting models: autoregressive integrated moving average regression (ARIMA), support vector regression (SVR), recurrent neural network (RNN), gated recurrent neural network (GRU), and long-short term memory neural network (LSTM). Finally, we present an ABC approach for three forecast combinations: heterogeneous, semiheterogeneous, and homogeneous combination. Experimental results indicate that the semi-heterogeneous forecast combination is superior to other combination strategies. For corn and soybean prices, ABC-based semi-heterogeneous forecast combinations have error reductions of 53.3% and 50.0% of MAPE and improvements of 32.4% and 34.5% in Dstat compared to the best single models, respectively. (c) 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
关键词Agricultural commodity price Forecast combination Semi-heterogeneous combination Artificial bee colony algorithm Denoising technique
DOI10.1016/j.ijforecast.2019.08.006
收录类别SCI
语种英语
WOS研究方向Business & Economics
WOS类目Economics ; Management
WOS记录号WOS:000731303000003
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/59707
专题中国科学院数学与系统科学研究院
通讯作者Wang, Zhen
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, CFS, MADIS, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jue,Wang, Zhen,Li, Xiang,et al. Artificial bee colony-based combination approach to forecasting agricultural commodity prices[J]. INTERNATIONAL JOURNAL OF FORECASTING,2022,38(1):21-34.
APA Wang, Jue,Wang, Zhen,Li, Xiang,&Zhou, Hao.(2022).Artificial bee colony-based combination approach to forecasting agricultural commodity prices.INTERNATIONAL JOURNAL OF FORECASTING,38(1),21-34.
MLA Wang, Jue,et al."Artificial bee colony-based combination approach to forecasting agricultural commodity prices".INTERNATIONAL JOURNAL OF FORECASTING 38.1(2022):21-34.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Jue]的文章
[Wang, Zhen]的文章
[Li, Xiang]的文章
百度学术
百度学术中相似的文章
[Wang, Jue]的文章
[Wang, Zhen]的文章
[Li, Xiang]的文章
必应学术
必应学术中相似的文章
[Wang, Jue]的文章
[Wang, Zhen]的文章
[Li, Xiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。