CSpace
Ancient finite entropy flows by powers of curvature in R-2
Choi, Kyeongsu1; Sun, Liming2
2022-03-01
发表期刊NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
ISSN0362-546X
卷号216页码:19
摘要We show the existence of non-homothetic ancient flows by powers of curvature embedded in R-2 whose entropy is finite. We determine the Morse indices and kernels of the linearized operator of shrinkers to the flows, and construct ancient flows by using unstable eigenfunctions of the linearized operator. (C) 2021 Elsevier Ltd. All rights reserved.
关键词Curve shortening flow Ancient solutions Fully nonlinear parabolic PDEs
DOI10.1016/j.na.2021.112673
收录类别SCI
语种英语
资助项目KIAS Individual Grant[MG078901]
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000721365200004
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/59608
专题中国科学院数学与系统科学研究院
通讯作者Choi, Kyeongsu
作者单位1.Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Choi, Kyeongsu,Sun, Liming. Ancient finite entropy flows by powers of curvature in R-2[J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,2022,216:19.
APA Choi, Kyeongsu,&Sun, Liming.(2022).Ancient finite entropy flows by powers of curvature in R-2.NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,216,19.
MLA Choi, Kyeongsu,et al."Ancient finite entropy flows by powers of curvature in R-2".NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 216(2022):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Choi, Kyeongsu]的文章
[Sun, Liming]的文章
百度学术
百度学术中相似的文章
[Choi, Kyeongsu]的文章
[Sun, Liming]的文章
必应学术
必应学术中相似的文章
[Choi, Kyeongsu]的文章
[Sun, Liming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。