KMS Of Academy of mathematics and systems sciences, CAS
| On a Rigidity Problem of Beardon and Minda | |
| L, Baokui1,2; Wang, Yuefei3,4 | |
| 2021-06-17 | |
| 发表期刊 | COMPUTATIONAL METHODS AND FUNCTION THEORY
![]() |
| ISSN | 1617-9447 |
| 页码 | 9 |
| 摘要 | In this paper, we give a positive answer to a rigidity problem of maps on the Riemann sphere related to cross-ratios, posed by Beardon and Minda (Proc Am Math Soc 130(4):987-998, 2001). Our main results are: (I) Let E not subset of R be an arc or a circle. If a map f : (C) over cap bar right arrow (C) over cap preserves cross-ratios in E, then f is aMobius transformation when (E) over bar not equal E and f is a Mobius or conjugate Mobius transformation when (E) over bar = E, where (EE) over bar = {z vertical bar z is an element of E}. (II) Let E subset of (R) over cap be an arc satisfying the condition that the cardinal number #(E boolean AND{0, 1, infinity 8}) < 2. If f preserves cross-ratios in E, then f is a Mobius or conjugateMobius transformation. Examples are provided to show that the assumption #(E boolean AND {0, 1, infinity}) < 2 is necessary. |
| 关键词 | Cross-ratios Absolute cross-ratios Mobius transformations Conjugate Mobius transformations |
| DOI | 10.1007/s40315-021-00393-6 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | NSF of China[11688101] |
| WOS研究方向 | Mathematics |
| WOS类目 | Mathematics, Applied ; Mathematics |
| WOS记录号 | WOS:000662797700001 |
| 出版者 | SPRINGER HEIDELBERG |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/58864 |
| 专题 | 中国科学院数学与系统科学研究院 |
| 通讯作者 | Wang, Yuefei |
| 作者单位 | 1.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China 2.Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China 3.Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guandong, Peoples R China 4.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China |
| 推荐引用方式 GB/T 7714 | L, Baokui,Wang, Yuefei. On a Rigidity Problem of Beardon and Minda[J]. COMPUTATIONAL METHODS AND FUNCTION THEORY,2021:9. |
| APA | L, Baokui,&Wang, Yuefei.(2021).On a Rigidity Problem of Beardon and Minda.COMPUTATIONAL METHODS AND FUNCTION THEORY,9. |
| MLA | L, Baokui,et al."On a Rigidity Problem of Beardon and Minda".COMPUTATIONAL METHODS AND FUNCTION THEORY (2021):9. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [L, Baokui]的文章 |
| [Wang, Yuefei]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [L, Baokui]的文章 |
| [Wang, Yuefei]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [L, Baokui]的文章 |
| [Wang, Yuefei]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论