CSpace  > 应用数学研究所
Temporal gravity model for important node identification in temporal networks
Bi, Jialin1; Jin, Ji1; Qu, Cunquan1,2; Zhan, Xiuxiu3; Wang, Guanghui1,2; Yan, Guiying4,5
2021-06-01
发表期刊CHAOS SOLITONS & FRACTALS
ISSN0960-0779
卷号147页码:17
摘要Identifying important nodes in networks is essential to analysing their structure and understanding their dynamical processes. In addition, myriad real systems are time-varying and can be represented as temporal networks. Motivated by classic gravity in physics, we propose a temporal gravity model to identify important nodes in temporal networks. In gravity, the attraction between two objects depends on their masses and distance. For the temporal network, we treat basic node properties (e.g., static and temporal properties) as the mass and temporal characteristics (i.e., fastest arrival distance and temporal shortest distance) as the distance. Experimental results on 10 real datasets show that the temporal gravity model outperforms baseline methods in quantifying the structural influence of nodes. When using the temporal shortest distance as the distance between two nodes, the proposed model is more robust and more accurately determines the node spreading influence than baseline methods. Furthermore, when using the temporal information to quantify the mass of each node, we found that a novel robust metric can be used to accurately determine the node influence regarding both network structure and information spreading. (c) 2021 Elsevier Ltd. All rights reserved.
关键词Temporal networks Temporal gravity model Important node Centrality
DOI10.1016/j.chaos.2021.110934
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[11631014] ; National Natural Science Foundation of China[11871311] ; National Natural Science Foundation of China[12001324] ; China Postdoctoral Science Foundation[2019TQ0188] ; China Postdoctoral Science Foundation[2019M662315] ; Shandong University multidisciplinary research and innovation team of young scholars[2020QNQT017] ; Taishan Scholars Program Foundation of Shandong Province, China
WOS研究方向Mathematics ; Physics
WOS类目Mathematics, Interdisciplinary Applications ; Physics, Multidisciplinary ; Physics, Mathematical
WOS记录号WOS:000663440300001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.amss.ac.cn/handle/2S8OKBNM/58858
专题应用数学研究所
通讯作者Qu, Cunquan
作者单位1.Shandong Univ, Sch Math, 27 Shanda Nanlu, Jinan 250100, Peoples R China
2.Shandong Univ, Data Sci Inst, Jinan 250100, Peoples R China
3.Delft Univ Technol, Intelligent Syst, NL-2600 GA Delft, Netherlands
4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Bi, Jialin,Jin, Ji,Qu, Cunquan,et al. Temporal gravity model for important node identification in temporal networks[J]. CHAOS SOLITONS & FRACTALS,2021,147:17.
APA Bi, Jialin,Jin, Ji,Qu, Cunquan,Zhan, Xiuxiu,Wang, Guanghui,&Yan, Guiying.(2021).Temporal gravity model for important node identification in temporal networks.CHAOS SOLITONS & FRACTALS,147,17.
MLA Bi, Jialin,et al."Temporal gravity model for important node identification in temporal networks".CHAOS SOLITONS & FRACTALS 147(2021):17.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bi, Jialin]的文章
[Jin, Ji]的文章
[Qu, Cunquan]的文章
百度学术
百度学术中相似的文章
[Bi, Jialin]的文章
[Jin, Ji]的文章
[Qu, Cunquan]的文章
必应学术
必应学术中相似的文章
[Bi, Jialin]的文章
[Jin, Ji]的文章
[Qu, Cunquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。