KMS Of Academy of mathematics and systems sciences, CAS
Optimal rate of convergence for two classes of schemes to stochastic differential equations driven by fractional Brownian motions | |
Hong, Jialin; Huang, Chuying1; Wang, Xu | |
2021-04-01 | |
发表期刊 | IMA JOURNAL OF NUMERICAL ANALYSIS
![]() |
ISSN | 0272-4979 |
卷号 | 41期号:2页码:1608-1638 |
摘要 | This paper investigates numerical schemes for stochastic differential equations driven by multi-dimensional fractional Brownian motions (fBms) with Hurst parameter H is an element of 1/2, 1). Based on the continuous dependence of numerical solutions on the driving noises, we propose the order conditions of Runge-Kutta methods for the strong convergence rate 2H - 1/2, which is the optimal strong convergence rate for approximating the Levy area of fBms. We provide an alternative way to analyse the convergence rate of explicit schemes by adding 'stage values' such that the schemes are interpreted as Runge-Kutta methods. Taking advantage of this technique the strong convergence rate of simplified step-N Euler schemes is obtained, which gives an answer to a conjecture in Deya et al. (2012) when H is an element of 1/2, 1). Numerical experiments verify the theoretical convergence rate. |
关键词 | fractional Brownian motion strong convergence rate Runge-Kutta method simplified step-N Euler scheme |
DOI | 10.1093/imanum/draa019 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[11971470] ; National Natural Science Foundation of China[11871068] |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000651815700026 |
出版者 | OXFORD UNIV PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.amss.ac.cn/handle/2S8OKBNM/58702 |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, Chuying |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Hong, Jialin,Huang, Chuying,Wang, Xu. Optimal rate of convergence for two classes of schemes to stochastic differential equations driven by fractional Brownian motions[J]. IMA JOURNAL OF NUMERICAL ANALYSIS,2021,41(2):1608-1638. |
APA | Hong, Jialin,Huang, Chuying,&Wang, Xu.(2021).Optimal rate of convergence for two classes of schemes to stochastic differential equations driven by fractional Brownian motions.IMA JOURNAL OF NUMERICAL ANALYSIS,41(2),1608-1638. |
MLA | Hong, Jialin,et al."Optimal rate of convergence for two classes of schemes to stochastic differential equations driven by fractional Brownian motions".IMA JOURNAL OF NUMERICAL ANALYSIS 41.2(2021):1608-1638. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论